Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

Inhibition of HIF-prolyl hydroxylases improves healing of intestinal anastomoses.

  • Moritz J Strowitzki‎ et al.
  • JCI insight‎
  • 2021‎

Anastomotic leakage (AL) accounts for a major part of in-house mortality in patients undergoing colorectal surgery. Local ischemia and abdominal sepsis are common risk factors contributing to AL and are characterized by upregulation of the hypoxia-inducible factor (HIF) pathway. The HIF pathway is critically regulated by HIF-prolyl hydroxylases (PHDs). Here, we investigated the significance of PHDs and the effects of pharmacologic PHD inhibition (PHI) during anastomotic healing. Ischemic or septic colonic anastomoses were created in mice by ligation of mesenteric vessels or lipopolysaccharide-induced abdominal sepsis, respectively. Genetic PHD deficiency (Phd1-/-, Phd2+/-, and Phd3-/-) or PHI were applied to manipulate PHD activity. Pharmacologic PHI and genetic PHD2 haplodeficiency (Phd2+/-) significantly improved healing of ischemic or septic colonic anastomoses, as indicated by increased bursting pressure and reduced AL rates. Only Phd2+/- (but not PHI or Phd1-/-) protected from sepsis-related mortality. Mechanistically, PHI and Phd2+/- induced immunomodulatory (M2) polarization of macrophages, resulting in increased collagen content and attenuated inflammation-driven immune cell recruitment. We conclude that PHI improves healing of colonic anastomoses in ischemic or septic conditions by Phd2+/--mediated M2 polarization of macrophages, conferring a favorable microenvironment for anastomotic healing. Patients with critically perfused colorectal anastomosis or abdominal sepsis could benefit from pharmacologic PHI.


Pan-Bcl-2 inhibitor Obatoclax is a potent late stage autophagy inhibitor in colorectal cancer cells independent of canonical autophagy signaling.

  • Bruno Christian Koehler‎ et al.
  • BMC cancer‎
  • 2015‎

Colorectal cancer is the third most common malignancy in humans and novel therapeutic approaches are urgently needed. Autophagy is an evolutionarily highly conserved cellular process by which cells collect unnecessary organelles or misfolded proteins and subsequently degrade them in vesicular structures in order to refuel cells with energy. Dysregulation of the complex autophagy signaling network has been shown to contribute to the onset and progression of cancer in various models. The Bcl-2 family of proteins comprises central regulators of apoptosis signaling and has been linked to processes involved in autophagy. The antiapoptotic members of the Bcl-2 family of proteins have been identified as promising anticancer drug targets and small molecules inhibiting those proteins are in clinical trials.


Loss of Prolyl-Hydroxylase 1 Protects against Biliary Fibrosis via Attenuated Activation of Hepatic Stellate Cells.

  • Moritz J Strowitzki‎ et al.
  • The American journal of pathology‎
  • 2018‎

Liver fibrosis, eventually progressing to cirrhosis necessitating liver transplantation, poses a significant clinical problem. Oxygen shortage (hypoxia) and hypoxia-inducible transcription factors (HIFs) have been acknowledged as important drivers of liver fibrosis. The significance of oxygen-sensing HIF prolyl-hydroxylase (PHD) enzymes in this context has, however, remained elusive. In this study, we demonstrate that loss of PHD1 (PHD1-/-) attenuates the development of liver fibrosis in mice subjected to chronic bile duct injury, induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine. This effect was accompanied with reduced recruitment of inflammatory leukocytes and attenuated occurrence of profibrotic myofibroblasts in PHD1-/- livers. Further analyses focused on the significance of PHD1 in the activation of hepatic stellate cells (HSCs), which represent the driving force in liver fibrosis. Primary HSCs isolated from PHD1-/- mice displayed significantly attenuated myofibroblast differentiation and profibrogenic properties compared with HSCs isolated from wild-type mice. Consistently, the expression of various profibrogenic and promitogenic factors was reduced in PHD1-/- HSCs, without alterations in HIF-1α protein levels. Of importance, PHD1 protein was expressed in HSCs within human livers, and PHD1 transcript expression was significantly increased with disease severity in hepatic tissue from patients with liver fibrosis. Collectively, these findings indicate that PHD1 deficiency protects against liver fibrosis and that these effects are partly due to attenuated activation of HSCs. PHD1 may represent a therapeutic target to alleviate liver fibrosis.


The HIF-prolyl hydroxylases have distinct and nonredundant roles in colitis-associated cancer.

  • Kilian B Kennel‎ et al.
  • JCI insight‎
  • 2022‎

Colitis-associated colorectal cancer (CAC) is a severe complication of inflammatory bowel disease (IBD). HIF-prolyl hydroxylases (PHD1, PHD2, and PHD3) control cellular adaptation to hypoxia and are considered promising therapeutic targets in IBD. However, their relevance in the pathogenesis of CAC remains elusive. We induced CAC in Phd1-/-, Phd2+/-, Phd3-/-, and WT mice with azoxymethane (AOM) and dextran sodium sulfate (DSS). Phd1-/- mice were protected against chronic colitis and displayed diminished CAC growth compared with WT mice. In Phd3-/- mice, colitis activity and CAC growth remained unaltered. In Phd2+/- mice, colitis activity was unaffected, but CAC growth was aggravated. Mechanistically, Phd2 deficiency (i) increased the number of tumor-associated macrophages in AOM/DSS-induced tumors, (ii) promoted the expression of EGFR ligand epiregulin in macrophages, and (iii) augmented the signal transducer and activator of transcription 3 and extracellular signal-regulated kinase 1/2 signaling, which at least in part contributed to aggravated tumor cell proliferation in colitis-associated tumors. Consistently, Phd2 deficiency in hematopoietic (Vav:Cre-Phd2fl/fl) but not in intestinal epithelial cells (Villin:Cre-Phd2fl/fl) increased CAC growth. In conclusion, the 3 different PHD isoenzymes have distinct and nonredundant effects, promoting (PHD1), diminishing (PHD2), or neutral (PHD3), on CAC growth.


Metastasis-associated fibroblasts promote angiogenesis in metastasized pancreatic cancer via the CXCL8 and the CCL2 axes.

  • Thomas M Pausch‎ et al.
  • Scientific reports‎
  • 2020‎

The characteristic desmoplastic stroma of pancreatic ductal adenocarcinoma (PDAC) is a key contributor to its lethality. This stromal microenvironment is populated by cancer-associated fibroblasts (CAFs) that interact with cancer cells to drive progression and chemo-resistance. Research has focused on CAFs in the primary tumour but not in metastases, calling into question the role of analogous metastasis-associated fibroblasts (MAFs). We infer a role of MAFs in murine hepatic metastases following untargeted treatment with the anti-angiogenic drug sunitinib in vivo. Treated metastases were smaller and had fewer stromal cells, but were able to maintain angiogenesis and metastasis formation in the liver. Furthermore, sunitinib was ineffective at reducing MAFs alongside other stromal cells. We speculate that cancer cells interact with MAFs to maintain angiogenesis and tumour progression. Thus, we tested interactions between metastatic pancreatic cancer cells and fibroblasts using in vitro co-culture systems. Co-cultures enhanced fibroblast proliferation and induced angiogenesis. We identify carcinoma-educated fibroblasts as the source of angiogenesis via secretions of CXCL8 (aka IL-8) and CCL2 (aka MCP-1). Overall, we demonstrate that metastasis-associated fibroblasts have potential as a therapeutic target and highlight the CXCL8 and CCL2 axes for further investigation.


Bcl-xL is an oncogenic driver in colorectal cancer.

  • Anna-Lena Scherr‎ et al.
  • Cell death & disease‎
  • 2016‎

Colorectal cancer (CRC) is the second most common malignant neoplasia in women and men worldwide. The B-cell lymphoma 2 (Bcl-2) protein family is mainly known for its pivotal role in the regulation of the mitochondrial death pathway. Anti-apoptotic Bcl-2 proteins may provide survival benefits and induce therapy resistance in cancer cells. Among anti-apoptotic Bcl-2 proteins, we found solely Bcl-xL strongly upregulated in human CRC specimens. In order to study protein function in the context of tumor initiation and progression in vivo, we generated a mouse model lacking Bcl-xL in intestinal epithelial cells (Bcl-xL(IEC-KO)). If challenged in an inflammation-driven tumor model, Bcl-xL(IEC-KO) mice showed a significantly reduced tumor burden with lower tumor numbers per animal and decreased tumor sizes. Analysis of cell death events by immunohistochemistry and immunoblotting revealed a striking increase of apoptosis in Bcl-xL-negative tumors. qRT-PCR and immunohistochemistry excluded changes in proliferative capacity and immune cell infiltration as reasons for the reduced tumor load and thereby identify apoptosis as key mechanism. Human CRC tissue was cultured ex vivo and treated with the small molecule compound ABT-737, which inhibits Bcl-xL and Bcl-2. Under ABT-737 treatment, the amount of apoptotic tumor cells significantly increased compared with controls, whereas proliferation levels remained unaltered. In summary, our findings identify Bcl-xL as a driver in colorectal tumorigenesis and cancer progression, making it a valuable target for clinical application.


PHD1 regulates p53-mediated colorectal cancer chemoresistance.

  • Sofie Deschoemaeker‎ et al.
  • EMBO molecular medicine‎
  • 2015‎

Overcoming resistance to chemotherapy is a major challenge in colorectal cancer (CRC) treatment, especially since the underlying molecular mechanisms remain unclear. We show that silencing of the prolyl hydroxylase domain protein PHD1, but not PHD2 or PHD3, prevents p53 activation upon chemotherapy in different CRC cell lines, thereby inhibiting DNA repair and favoring cell death. Mechanistically, PHD1 activity reinforces p53 binding to p38α kinase in a hydroxylation-dependent manner. Following p53-p38α interaction and chemotherapeutic damage, p53 can be phosphorylated at serine 15 and thus activated. Active p53 allows nucleotide excision repair by interacting with the DNA helicase XPB, thereby protecting from chemotherapy-induced apoptosis. In accord with this observation, PHD1 knockdown greatly sensitizes CRC to 5-FU in mice. We propose that PHD1 is part of the resistance machinery in CRC, supporting rational drug design of PHD1-specific inhibitors and their use in combination with chemotherapy.


Salinomycin: Anti-tumor activity in a pre-clinical colorectal cancer model.

  • Johannes Klose‎ et al.
  • PloS one‎
  • 2019‎

Salinomycin is a polyether antibiotic with selective activity against human cancer stem cells. The impact of salinomycin on patient-derived primary human colorectal cancer cells has not been investigated so far. Thus, here we aimed to investigate the activity of salinomycin against tumor initiating cells isolated from patients with colorectal cancer.


High hepatic expression of PDK4 improves survival upon multimodal treatment of colorectal liver metastases.

  • Moritz J Strowitzki‎ et al.
  • British journal of cancer‎
  • 2019‎

Patients with borderline resectable colorectal liver metastases (CRLM) frequently receive neoadjuvant chemotherapy (NC) to reduce tumour burden, thus making surgical resection feasible. Even though NC can induce severe liver injury, most studies investigating tissue-based prognostic markers focus on tumour tissue. Here, we assessed the prognostic significance of pyruvate-dehydrogenase-kinase isoenzyme 4 (PDK4) within liver tissue of patients undergoing surgical resection due to CRLM.


Reduction of Liver Metastasis Stiffness Improves Response to Bevacizumab in Metastatic Colorectal Cancer.

  • Ying Shen‎ et al.
  • Cancer cell‎
  • 2020‎

Tumors are influenced by the mechanical properties of their microenvironment. Using patient samples and atomic force microscopy, we found that tissue stiffness is higher in liver metastases than in primary colorectal tumors. Highly activated metastasis-associated fibroblasts increase tissue stiffness, which enhances angiogenesis and anti-angiogenic therapy resistance. Drugs targeting the renin-angiotensin system, normally prescribed to treat hypertension, inhibit fibroblast contraction and extracellular matrix deposition, thereby reducing liver metastases stiffening and increasing the anti-angiogenic effects of bevacizumab. Patients treated with bevacizumab showed prolonged survival when concomitantly treated with renin-angiotensin inhibitors, highlighting the importance of modulating the mechanical microenvironment for therapeutic regimens.


LDB1 overexpression is a negative prognostic factor in colorectal cancer.

  • Sebastián A García‎ et al.
  • Oncotarget‎
  • 2016‎

Colorectal cancer (CRC) is the third most common cancer in western countries and is driven by the Wnt signaling pathway. LIM-domain-binding protein 1 (LDB1) interacts with the Wnt signaling pathway and has been connected to malignant diseases. We therefore aimed to evaluate the role of LDB1 in CRC.


EMX2 gene expression predicts liver metastasis and survival in colorectal cancer.

  • Berk Aykut‎ et al.
  • BMC cancer‎
  • 2017‎

The Empty Spiracles Homeobox (EMX-) 2 gene has been associated with regulation of growth and differentiation in neuronal development. While recent studies provide evidence that EMX2 regulates tumorigenesis of various solid tumors, its role in colorectal cancer remains unknown. We aimed to assess the prognostic significance of EMX2 expression in stage III colorectal adenocarcinoma.


Pharmacological HIF-inhibition attenuates postoperative adhesion formation.

  • Moritz J Strowitzki‎ et al.
  • Scientific reports‎
  • 2017‎

Peritoneal adhesions represent a common complication of abdominal surgery, and tissue hypoxia is a main determinant in adhesion formation. Reliable therapeutic options to reduce peritoneal adhesions are scarce. We investigated whether the formation of postsurgical adhesions can be affected by pharmacological interference with hypoxia-inducible factors (HIFs). Mice were treated with a small molecule HIF-inhibitor, YC-1 (3-[5'-Hydroxymethyl-2'-furyl]-1-benzyl-indazole), or vehicle three days before and seven days after induction of peritoneal adhesions or, alternatively, once during induction of peritoneal adhesions. Pretreatment or single intraperitoneal lavage with YC-1 significantly reduced postoperative adhesion formation without prompting systemic adverse effects. Expression analyses of cytokines in peritoneal tissue and fluid and in vitro assays applying macrophages and peritoneal fibroblasts indicated that this effect was cooperatively mediated by various putatively HIF-1α-dependent mechanisms, comprising attenuated pro-inflammatory activation of macrophages, impaired recruitment and activation of peritoneal fibroblasts, mitigated epithelial-mesenchymal-transition (EMT), as well as enhanced fibrinolysis and impaired angiogenesis. Thus, this study identifies prevention of postsurgical peritoneal adhesions as a novel and promising field for the application of HIF inhibitors in clinical practice.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: