Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

Blood pressure loci identified with a gene-centric array.

  • Toby Johnson‎ et al.
  • American journal of human genetics‎
  • 2011‎

Raised blood pressure (BP) is a major risk factor for cardiovascular disease. Previous studies have identified 47 distinct genetic variants robustly associated with BP, but collectively these explain only a few percent of the heritability for BP phenotypes. To find additional BP loci, we used a bespoke gene-centric array to genotype an independent discovery sample of 25,118 individuals that combined hypertensive case-control and general population samples. We followed up four SNPs associated with BP at our p < 8.56 × 10(-7) study-specific significance threshold and six suggestively associated SNPs in a further 59,349 individuals. We identified and replicated a SNP at LSP1/TNNT3, a SNP at MTHFR-NPPB independent (r(2) = 0.33) of previous reports, and replicated SNPs at AGT and ATP2B1 reported previously. An analysis of combined discovery and follow-up data identified SNPs significantly associated with BP at p < 8.56 × 10(-7) at four further loci (NPR3, HFE, NOS3, and SOX6). The high number of discoveries made with modest genotyping effort can be attributed to using a large-scale yet targeted genotyping array and to the development of a weighting scheme that maximized power when meta-analyzing results from samples ascertained with extreme phenotypes, in combination with results from nonascertained or population samples. Chromatin immunoprecipitation and transcript expression data highlight potential gene regulatory mechanisms at the MTHFR and NOS3 loci. These results provide candidates for further study to help dissect mechanisms affecting BP and highlight the utility of studying SNPs and samples that are independent of those studied previously even when the sample size is smaller than that in previous studies.


Influence of pentraxin 3 (PTX3) genetic variants on myocardial infarction risk and PTX3 plasma levels.

  • Elisa Barbati‎ et al.
  • PloS one‎
  • 2012‎

PTX3 is a long pentraxin of the innate immune system produced by different cell types (mononuclear phagocytes, dendritic cells, fibroblasts and endothelial cells) at the inflammatory site. It appears to have a cardiovascular protective function by acting on the immune-inflammatory balance in the cardiovascular system. PTX3 plasma concentration is an independent predictor of mortality in patients with acute myocardial infarction (AMI) but the influence of PTX3 genetic variants on PTX3 plasma concentration has been investigated very little and there is no information on the association between PTX3 variations and AMI. Subjects of European origin (3245, 1751 AMI survivors and 1494 controls) were genotyped for three common PTX3 polymorphisms (SNPs) (rs2305619, rs3816527, rs1840680). Genotype and allele frequencies of the three SNPs and the haplotype frequencies were compared for the two groups. None of the genotypes, alleles or haplotypes were significantly associated with the risk of AMI. However, analysis adjusted for age and sex indicated that the three PTX3 SNPs and the corresponding haplotypes were significantly associated with different PTX3 plasma levels. There was also a significant association between PTX3 plasma concentrations and the risk of all-cause mortality at three years in AMI patients (OR 1.10, 95% CI: 1.01-1.20, p = 0.02). Our study showed that PTX3 plasma levels are influenced by three PTX3 polymorphisms. Genetically determined high PTX3 levels do not influence the risk of AMI, suggesting that the PTX3 concentration itself is unlikely to be even a modest causal factor for AMI. Analysis also confirmed that PTX3 is a prognostic marker after AMI.


Sequencing of NOTCH1 gene in an Italian population with bicuspid aortic valve: Preliminary results from the GISSI OUTLIERS VAR study.

  • Silvana Pileggi‎ et al.
  • Gene‎
  • 2019‎

Bicuspid aortic valve (BAV) formation is genetically determined, with reduced penetrance and variable expressivity. NOTCH1 is a proven candidate gene and its mutations have been found in familial and sporadic cases of BAV.


Anaesthesiological strategies in elective craniotomy: randomized, equivalence, open trial--the NeuroMorfeo trial.

  • Giuseppe Citerio‎ et al.
  • Trials‎
  • 2009‎

Many studies have attempted to determine the "best" anaesthetic technique for neurosurgical procedures in patients without intracranial hypertension. So far, no study comparing intravenous (IA) with volatile-based neuroanaesthesia (VA) has been able to demonstrate major outcome differences nor a superiority of one of the two strategies in patients undergoing elective supratentorial neurosurgery. Therefore, current practice varies and includes the use of either volatile or intravenous anaesthetics in addition to narcotics. Actually the choice of the anaesthesiological strategy depends only on the anaesthetists' preferences or institutional policies. This trial, named NeuroMorfeo, aims to assess the equivalence between volatile and intravenous anaesthetics for neurosurgical procedures.


Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.

  • Rona J Strawbridge‎ et al.
  • Diabetes‎
  • 2011‎

Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology.


A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease.

  • Majid Nikpay‎ et al.
  • Nature genetics‎
  • 2015‎

Existing knowledge of genetic variants affecting risk of coronary artery disease (CAD) is largely based on genome-wide association study (GWAS) analysis of common SNPs. Leveraging phased haplotypes from the 1000 Genomes Project, we report a GWAS meta-analysis of ∼185,000 CAD cases and controls, interrogating 6.7 million common (minor allele frequency (MAF) > 0.05) and 2.7 million low-frequency (0.005 < MAF < 0.05) variants. In addition to confirming most known CAD-associated loci, we identified ten new loci (eight additive and two recessive) that contain candidate causal genes newly implicating biological processes in vessel walls. We observed intralocus allelic heterogeneity but little evidence of low-frequency variants with larger effects and no evidence of synthetic association. Our analysis provides a comprehensive survey of the fine genetic architecture of CAD, showing that genetic susceptibility to this common disease is largely determined by common SNPs of small effect size.


Long-term cardiovascular risks and the impact of statin treatment on socioeconomic inequalities: a microsimulation model.

  • Runguo Wu‎ et al.
  • The British journal of general practice : the journal of the Royal College of General Practitioners‎
  • 2024‎

UK cardiovascular disease (CVD) incidence and mortality have declined in recent decades but socioeconomic inequalities persist.


A genome-wide association search for type 2 diabetes genes in African Americans.

  • Nicholette D Palmer‎ et al.
  • PloS one‎
  • 2012‎

African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10(-8)). SNP rs7560163 (P = 7.0×10(-9), OR (95% CI) = 0.75 (0.67-0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10(-5)) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations.


Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: a multi-ethnic meta-analysis of 45,891 individuals.

  • Zari Dastani‎ et al.
  • PLoS genetics‎
  • 2012‎

Circulating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P = 4.5×10(-8)-1.2×10(-43)). Using a novel method to combine data across ethnicities (N = 4,232 African Americans, N = 1,776 Asians, and N = 29,347 Europeans), we identified two additional novel loci. Expression analyses of 436 human adipocyte samples revealed that mRNA levels of 18 genes at candidate regions were associated with adiponectin concentrations after accounting for multiple testing (p<3×10(-4)). We next developed a multi-SNP genotypic risk score to test the association of adiponectin decreasing risk alleles on metabolic traits and diseases using consortia-level meta-analytic data. This risk score was associated with increased risk of T2D (p = 4.3×10(-3), n = 22,044), increased triglycerides (p = 2.6×10(-14), n = 93,440), increased waist-to-hip ratio (p = 1.8×10(-5), n = 77,167), increased glucose two hours post oral glucose tolerance testing (p = 4.4×10(-3), n = 15,234), increased fasting insulin (p = 0.015, n = 48,238), but with lower in HDL-cholesterol concentrations (p = 4.5×10(-13), n = 96,748) and decreased BMI (p = 1.4×10(-4), n = 121,335). These findings identify novel genetic determinants of adiponectin levels, which, taken together, influence risk of T2D and markers of insulin resistance.


Thromboembolic event rate in paroxysmal and persistent atrial fibrillation: data from the GISSI-AF trial.

  • Marcello Disertori‎ et al.
  • BMC cardiovascular disorders‎
  • 2013‎

Few data on the thromboembolic (TE) risk of paroxysmal and persistent atrial fibrillation (AF) are available. This study aimed to assess the incidence of TE events in paroxysmal and persistent AF.


Genome-wide mapping of susceptibility to coronary artery disease identifies a novel replicated locus on chromosome 17.

  • Martin Farrall‎ et al.
  • PLoS genetics‎
  • 2006‎

Coronary artery disease (CAD) is a leading cause of death world-wide, and most cases have a complex, multifactorial aetiology that includes a substantial heritable component. Identification of new genes involved in CAD may inform pathogenesis and provide new therapeutic targets. The PROCARDIS study recruited 2,658 affected sibling pairs (ASPs) with onset of CAD before age 66 y from four European countries to map susceptibility loci for CAD. ASPs were defined as having CAD phenotype if both had CAD, or myocardial infarction (MI) phenotype if both had a MI. In a first study, involving a genome-wide linkage screen, tentative loci were mapped to Chromosomes 3 and 11 with the CAD phenotype (1,464 ASPs), and to Chromosome 17 with the MI phenotype (739 ASPs). In a second study, these loci were examined with a dense panel of grid-tightening markers in an independent set of families (1,194 CAD and 344 MI ASPs). This replication study showed a significant result on Chromosome 17 (MI phenotype; p = 0.009 after adjustment for three independent replication tests). An exclusion analysis suggests that further genes of effect size lambda(sib) > 1.24 are unlikely to exist in these populations of European ancestry. To our knowledge, this is the first genome-wide linkage analysis to map, and replicate, a CAD locus. The region on Chromosome 17 provides a compelling target within which to identify novel genes underlying CAD. Understanding the genetic aetiology of CAD may lead to novel preventative and/or therapeutic strategies.


Common variants at 10 genomic loci influence hemoglobin A₁(C) levels via glycemic and nonglycemic pathways.

  • Nicole Soranzo‎ et al.
  • Diabetes‎
  • 2010‎

Glycated hemoglobin (HbA₁(c)), used to monitor and diagnose diabetes, is influenced by average glycemia over a 2- to 3-month period. Genetic factors affecting expression, turnover, and abnormal glycation of hemoglobin could also be associated with increased levels of HbA₁(c). We aimed to identify such genetic factors and investigate the extent to which they influence diabetes classification based on HbA₁(c) levels.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: