Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

An evolutionary perspective on leaf economics: phylogenetics of leaf mass per area in vascular plants.

  • Olivier Flores‎ et al.
  • Ecology and evolution‎
  • 2014‎

In plant leaves, resource use follows a trade-off between rapid resource capture and conservative storage. This "worldwide leaf economics spectrum" consists of a suite of intercorrelated leaf traits, among which leaf mass per area, LMA, is one of the most fundamental as it indicates the cost of leaf construction and light-interception borne by plants. We conducted a broad-scale analysis of the evolutionary history of LMA across a large dataset of 5401 vascular plant species. The phylogenetic signal in LMA displayed low but significant conservatism, that is, leaf economics tended to be more similar among close relatives than expected by chance alone. Models of trait evolution indicated that LMA evolved under weak stabilizing selection. Moreover, results suggest that different optimal phenotypes evolved among large clades within which extremes tended to be selected against. Conservatism in LMA was strongly related to growth form, as were selection intensity and phenotypic evolutionary rates: woody plants showed higher conservatism in relation to stronger stabilizing selection and lower evolutionary rates compared to herbaceous taxa. The evolutionary history of LMA thus paints different evolutionary trajectories of vascular plant species across clades, revealing the coordination of leaf trait evolution with growth forms in response to varying selection regimes.


The Intellectual Disability and Schizophrenia Associated Transcription Factor TCF4 Is Regulated by Neuronal Activity and Protein Kinase A.

  • Mari Sepp‎ et al.
  • The Journal of neuroscience : the official journal of the Society for Neuroscience‎
  • 2017‎

Transcription factor 4 (TCF4 also known as ITF2 or E2-2) is a basic helix-loop-helix (bHLH) protein associated with Pitt-Hopkins syndrome, intellectual disability, and schizophrenia (SCZ). Here, we show that TCF4-dependent transcription in cortical neurons cultured from embryonic rats of both sexes is induced by neuronal activity via soluble adenylyl cyclase and protein kinase A (PKA) signaling. PKA phosphorylates TCF4 directly and a PKA phosphorylation site in TCF4 is necessary for its transcriptional activity in cultured neurons and in the developing brain in vivo We also demonstrate that Gadd45g (growth arrest and DNA damage inducible gamma) is a direct target of neuronal-activity-induced, TCF4-dependent transcriptional regulation and that TCF4 missense variations identified in SCZ patients alter the transcriptional activity of TCF4 in neurons. This study identifies a new role for TCF4 as a neuronal-activity-regulated transcription factor, offering a novel perspective on the association of TCF4 with cognitive disorders.SIGNIFICANCE STATEMENT The importance of the basic helix-loop-helix transcription factor transcription factor 4 (TCF4) in the nervous system is underlined by its association with common and rare cognitive disorders. In the current study, we show that TCF4-controlled transcription in primary cortical neurons is induced by neuronal activity and protein kinase A. Our results support the hypotheses that dysregulation of neuronal-activity-dependent signaling plays a significant part in the etiology of neuropsychiatric and neurodevelopmental disorders.


Lactate-Induced Glucose Output Is Unchanged by Metformin at a Therapeutic Concentration - A Mass Spectrometry Imaging Study of the Perfused Rat Liver.

  • Giulio Calza‎ et al.
  • Frontiers in pharmacology‎
  • 2018‎

Metformin is the first line drug for type 2 diabetes but its molecular mechanisms remain unclear. Here, we have studied the acute effect of a therapeutically relevant intrahepatic concentration of metformin on glucose production from lactate. We selected the perfused rat liver as experimental system since it enables the complete control of drug dosage. We used MALDI (matrix-assisted laser desorption/ionization) mass spectrometry imaging to estimate the concentration of metformin in the livers and we measured the concentration of glucose in the effluent medium under basal conditions and following lactate addition. MALDI mass spectra of thin-sections of freeze-clamped rat liver perfused with metformin showed a peak at 130.16 m/z which was unambiguously assigned to metformin. The mass spectrometric detection limit was at a tissue concentration of about 250 nM, and uptake of metformin from the perfusion medium to the liver occurred with a Km of 0.44 mM. Metformin was evenly distributed in the liver irrespective of its concentration in the perfusion medium and the duration of a perfusion. At a parenchymal concentration of 30 μM, metformin did not induce any significant suppression of the basal or lactate-induced glucose release from the liver. These results show that matrix-assisted laser desorption/ionization mass spectrometry imaging can be applied to estimate the tissue concentration and distribution of metformin in a therapeutically relevant micromolar concentration range. Our findings challenge the view that metformin causes an inhibition of glucose release from the liver by an acute inhibition of mitochondrial glycerol 3-phosphate dehydrogenase (EC 1.1.5.3).


Caspase-2 and p75 neurotrophin receptor (p75NTR) are involved in the regulation of SREBP and lipid genes in hepatocyte cells.

  • Dan Duc Pham‎ et al.
  • Cell death & disease‎
  • 2019‎

Lipid-induced toxicity is part of several human diseases, but the mechanisms involved are not fully understood. Fatty liver is characterized by the expression of different growth and tissue factors. The neurotrophin, nerve growth factor (NGF) and its pro-form, pro-NGF, are present in fatty liver together with p75 neurotrophin receptor (p75NTR). Stimulation of human Huh7 hepatocyte cells with NGF and pro-NGF induced Sterol-regulator-element-binding protein-2 (SREBP2) activation and increased Low-Density Lipoprotein Receptor (LDLR) expression. We observed that phosphorylation of caspase-2 by p38 MAPK was essential for this regulation involving a caspase-3-mediated cleavage of SREBP2. RNA sequencing showed that several genes involved in lipid metabolism were altered in p75NTR-deficient mouse liver. The same lipogenic genes were downregulated in p75NTR gene-engineered human Huh7 cells and reciprocally upregulated by stimulation of p75NTRs. In the knock-out mice the serum cholesterol and triglyceride levels were reduced, suggesting a physiological role of p75NTRs in whole-body lipid metabolism. Taken together, this study shows that p75NTR signaling influences a network of genes involved in lipid metabolism in liver and hepatocyte cells. Modulation of p75NTR signaling may be a target to consider in various metabolic disorders accompanied by increased lipid accumulation.


GTPBP8 is required for mitoribosomal biogenesis and mitochondrial translation.

  • Liang Wang‎ et al.
  • Cellular and molecular life sciences : CMLS‎
  • 2023‎

Mitochondrial translation occurs on the mitochondrial ribosome, also known as the mitoribosome. The assembly of mitoribosomes is a highly coordinated process. During mitoribosome biogenesis, various assembly factors transiently associate with the nascent ribosome, facilitating the accurate and efficient construction of the mitoribosome. However, the specific factors involved in the assembly process, the precise mechanisms, and the cellular compartments involved in this vital process are not yet fully understood. In this study, we discovered a crucial role for GTP-binding protein 8 (GTPBP8) in the assembly of the mitoribosomal large subunit (mt-LSU) and mitochondrial translation. GTPBP8 is identified as a novel GTPase located in the matrix and peripherally bound to the inner mitochondrial membrane. Importantly, GTPBP8 is specifically associated with the mt-LSU during its assembly. Depletion of GTPBP8 leads to an abnormal accumulation of mt-LSU, indicating that GTPBP8 is critical for proper mt-LSU assembly. Furthermore, the absence of GTPBP8 results in reduced levels of fully assembled 55S monosomes. This impaired assembly leads to compromised mitochondrial translation and, consequently, impaired mitochondrial function. The identification of GTPBP8 as an important player in these processes provides new insights into the molecular mechanisms underlying mitochondrial protein synthesis and its regulation.


Fibroblast growth factor-21 enhances mitochondrial functions and increases the activity of PGC-1α in human dopaminergic neurons via Sirtuin-1.

  • Johanna Mäkelä‎ et al.
  • SpringerPlus‎
  • 2014‎

Mitochondrial dysfunctions accompany several neurodegenerative disorders and contribute to disease pathogenesis among others in Parkinson's disease (PD). Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is a major regulator of mitochondrial functions and biogenesis, and was suggested as a therapeutic target in PD. PGC-1α is regulated by both transcriptional and posttranslational events involving also the action of growth factors. Fibroblast growth factor-21 (FGF21) is a regulator of glucose and fatty acid metabolism in the body but little is known about its action in the brain. We show here that FGF21 increased the levels and activity of PGC-1α and elevated mitochondrial antioxidants in human dopaminergic cells in culture. The activation of PGC-1α by FGF21 occurred via the NAD(+)-dependent deacetylase Sirtuin-1 (SIRT1) subsequent to an increase in the enzyme, nicotinamide phosphoribosyltransferase (Nampt). FGF21 also enhanced mitochondrial respiratory capacity in human dopaminergic neurons as shown in real-time analyses of living cells. FGF21 is present in the brain including midbrain and is expressed by glial cells in culture. These results show that FGF21 activates PGC-1α and increases mitochondrial efficacy in human dopaminergic neurons suggesting that FGF21 could potentially play a role in dopaminergic neuron viability and in PD.


Destabilization of the outer and inner mitochondrial membranes by core and linker histones.

  • Annunziata Cascone‎ et al.
  • PloS one‎
  • 2012‎

Extensive DNA damage leads to apoptosis. Histones play a central role in DNA damage sensing and may mediate signals of genotoxic damage to cytosolic effectors including mitochondria.


Peroxisome proliferator-activated receptor-γ (PPARγ) agonist is neuroprotective and stimulates PGC-1α expression and CREB phosphorylation in human dopaminergic neurons.

  • Johanna Mäkelä‎ et al.
  • Neuropharmacology‎
  • 2016‎

Mitochondrial dysfunction has been linked to several neurodegenerative diseases such as Parkinson's disease (PD). Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a master gene for mitochondrial biogenesis and has been shown to be neuroprotective in models of PD. In this work we have studied the mechanisms by which peroxisome proliferator-activated receptor-γ (PPARγ) selective agonist N-(2-benzoylphenyl)-O-[2-(methyl-2-pyridinylamino)ethyl]-l-tyrosine hydrate (GW1929) acts on human dopaminergic neurons in culture. Data showed that GW1929 increased the viability of human dopaminergic neurons and protected them against oxidative stress induced by H2O2 and the mitochondrial toxin Rotenone. The enhanced resilience of the neurons was attributed to increased levels of mitochondrial antioxidants and of PGC-1α. GW1929 treatment further increased cell respiration, mitochondrial biogenesis and sirtuin-1 (SIRT1) expression in the human dopaminergic neurons. Phosphorylation of cAMP responsive element-binding protein (CREB) was also robustly increased in GW1929-treated cells. Together these results show that the PPARγ agonist GW1929 influences CREB signaling and PGC-1α activities in the human dopaminergic neurons contributing to an increased cell viability. This supports the view that drugs acting on the PPARγ-PGC-1α signaling in neurons may have beneficial effects in PD and possible also in other brain disorders.


Evolution of a family of metazoan active-site-serine enzymes from penicillin-binding proteins: a novel facet of the bacterial legacy.

  • Nina Peitsaro‎ et al.
  • BMC evolutionary biology‎
  • 2008‎

Bacterial penicillin-binding proteins and beta-lactamases (PBP-betaLs) constitute a large family of serine proteases that perform essential functions in the synthesis and maintenance of peptidoglycan. Intriguingly, genes encoding PBP-betaL homologs occur in many metazoan genomes including humans. The emerging role of LACTB, a mammalian mitochondrial PBP-betaL homolog, in metabolic signaling prompted us to investigate the evolutionary history of metazoan PBP-betaL proteins.


FAM92A1 is a BAR domain protein required for mitochondrial ultrastructure and function.

  • Liang Wang‎ et al.
  • The Journal of cell biology‎
  • 2019‎

Mitochondrial function is closely linked to its dynamic membrane ultrastructure. The mitochondrial inner membrane (MIM) can form extensive membrane invaginations known as cristae, which contain the respiratory chain and ATP synthase for oxidative phosphorylation. The molecular mechanisms regulating mitochondrial ultrastructure remain poorly understood. The Bin-Amphiphysin-Rvs (BAR) domain proteins are central regulators of diverse cellular processes related to membrane remodeling and dynamics. Whether BAR domain proteins are involved in sculpting membranes in specific submitochondrial compartments is largely unknown. In this study, we report FAM92A1 as a novel BAR domain protein localizes to the matrix side of the MIM. Loss of FAM92A1 caused a severe disruption to mitochondrial morphology and ultrastructure, impairing organelle bioenergetics. Furthermore, FAM92A1 displayed a membrane-remodeling activity in vitro, inducing a high degree of membrane curvature. Collectively, our findings uncover a role for a BAR domain protein as a critical organizer of the mitochondrial ultrastructure that is indispensable for mitochondrial function.


PGC-1α Signaling Increases GABA(A) Receptor Subunit α2 Expression, GABAergic Neurotransmission and Anxiety-Like Behavior in Mice.

  • Taavi Vanaveski‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2021‎

Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) is a master regulator of mitochondria biogenesis and cell stress playing a role in metabolic and degenerative diseases. In the brain PGC-1α expression has been localized mainly to GABAergic interneurons but its overall role is not fully understood. We observed here that the protein levels of γ-aminobutyric acid (GABA) type A receptor-α2 subunit (GABARα2) were increased in hippocampus and brain cortex in transgenic (Tg) mice overexpressing PGC-1α in neurons. Along with this, GABARα2 expression was enhanced in the hippocampus of the PGC-1α Tg mice, as shown by quantitative PCR. Double immunostaining revealed that GABARα2 co-localized with the synaptic protein gephyrin in higher amounts in the striatum radiatum layer of the hippocampal CA1 region in the Tg compared with Wt mice. Electrophysiology revealed that the frequency of spontaneous and miniature inhibitory postsynaptic currents (mIPSCs) was increased in the CA1 region in the Tg mice, indicative of an augmented GABAergic transmission. Behavioral tests revealed an increase for anxiety-like behavior in the PGC-1α Tg mice compared with controls. To study whether drugs acting on PPARγ can affect GABARα2, we employed pioglitazone that elevated GABARα2 expression in primary cultured neurons. Similar results were obtained using the specific PPARγ agonist, N-(2-benzoylphenyl)-O-[2-(methyl-2-pyridinylamino) ethyl]-L-tyrosine hydrate (GW1929). These results demonstrate that PGC-1α regulates GABARα2 subunits and GABAergic neurotransmission in the hippocampus with behavioral consequences. This indicates further that drugs like pioglitazone, widely used in the treatment of type 2 diabetes, can influence GABARα2 expression via the PPARγ/PGC-1α system.


Combined immunodeficiency and hypoglycemia associated with mutations in hypoxia upregulated 1.

  • Emma M Haapaniemi‎ et al.
  • The Journal of allergy and clinical immunology‎
  • 2017‎

No abstract available


Functional diversity of human basic helix-loop-helix transcription factor TCF4 isoforms generated by alternative 5' exon usage and splicing.

  • Mari Sepp‎ et al.
  • PloS one‎
  • 2011‎

Transcription factor 4 (TCF4 alias ITF2, E2-2, ME2 or SEF2) is a ubiquitous class A basic helix-loop-helix protein that binds to E-box DNA sequences (CANNTG). While involved in the development and functioning of many different cell types, recent studies point to important roles for TCF4 in the nervous system. Specifically, human TCF4 gene is implicated in susceptibility to schizophrenia and TCF4 haploinsufficiency is the cause of the Pitt-Hopkins mental retardation syndrome. However, the structure, expression and coding potential of the human TCF4 gene have not been described in detail.


Expression and purification of the mitochondrial serine protease LACTB as an N-terminal GST fusion protein in Escherichia coli.

  • Julius Liobikas‎ et al.
  • Protein expression and purification‎
  • 2006‎

LACTB is a mammalian mitochondrial protein sharing sequence similarity to the beta-lactamase/penicillin-binding protein family of serine proteases that are involved in bacterial cell wall metabolism. The physiological role of LACTB is unclear. In this study we have subcloned the cDNA of mouse LACTB (mLACTB) and produced recombinant mLACTB protein in Escherichia coli. When mLACTB was expressed as an N-terminal GST fusion protein (GST-mLACTB), full-length GST-mLACTB protein was recovered by glutathione-agarose affinity chromatography as determined by MALDI-TOF mass spectrometry and immunoblotting. Expression of mLACTB as a C-terminal GST fusion protein or with either an N- or C-terminal His6-tag resulted in proteolytic degradation of the protein and we were not able to detect full-length mLACTB. Analysis of GST-mLACTB by Fourier transform infrared spectrometry revealed the presence of alpha-helices, beta-sheets and turns, consistent with a well-defined secondary structure. These results show that mLACTB can be expressed as a GST fusion protein in E. coli and suggest that GST-mLACTB was properly folded.


Depletion of TM6SF2 disturbs membrane lipid composition and dynamics in HuH7 hepatoma cells.

  • Hanna Ruhanen‎ et al.
  • Biochimica et biophysica acta. Molecular and cell biology of lipids‎
  • 2017‎

A polymorphism of TM6SF2 associates with hepatic lipid accumulation and reduction of triacylglycerol (TAG) secretion, but the function of the encoded protein has remained enigmatic. We studied the effect of stable TM6SF2 knock-down on the lipid content and composition, mitochondrial fatty acid oxidation and organelle structure of HuH7 hepatoma cells. Knock-down of TM6SF2 resulted in intracellular accumulation of TAGs, cholesterol esters, phosphatidylcholine (PC) and phosphatidylethanolamine. In all of these lipid classes, polyunsaturated lipid species were significantly reduced while saturated and monounsaturated species increased their proportions. The PCs encountered relative and absolute arachidonic acid (AA, 20:4n-6) depletion, and AA was also reduced in the total cellular fatty acid pool. Synthesis and turnover of the hepatocellular glycerolipids was enhanced. The TM6SF2 knock-down cells secreted lipoprotein-like particles with a smaller diameter than in the controls, and more lysosome/endosome structures appeared in the knock-down cells. The mitochondrial capacity for palmitate oxidation was significantly reduced. These observations provide novel clues to TM6SF2 function and raise altered mebrane lipid composition and dynamics among the mechanism(s) by which the protein deficiency disturbs hepatic TAG secretion.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: