Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 29 papers

The genome of the basal agaricomycete Xanthophyllomyces dendrorhous provides insights into the organization of its acetyl-CoA derived pathways and the evolution of Agaricomycotina.

  • Rahul Sharma‎ et al.
  • BMC genomics‎
  • 2015‎

Xanthophyllomyces dendrorhous is a basal agaricomycete with uncertain taxonomic placement, known for its unique ability to produce astaxanthin, a carotenoid with antioxidant properties. It was the aim of this study to elucidate the organization of its CoA-derived pathways and to use the genomic information of X. dendrorhous for a phylogenomic investigation of the Basidiomycota.


Baobabopsis, a new genus of graminicolous downy mildews from tropical Australia, with an updated key to the genera of downy mildews.

  • Marco Thines‎ et al.
  • IMA fungus‎
  • 2015‎

So far 19 genera of downy mildews have been described, of which seven are parasitic to grasses. Here, we introduce a new genus, Baobabopsis, to accommodate two distinctive downy mildews, B. donbarrettii sp. nov., collected on Perotis rara in northern Australia, and B. enneapogonis sp. nov., collected on Enneapogon spp. in western and central Australia. Baobabopsis donbarrettii produced both oospores and sporangiospores that are morphologically distinct from other downy mildews on grasses. Molecular phylogenetic analyses showed that the two species of Baobabopsis occupied an isolated position among the known genera of graminicolous downy mildews. The importance of the Poaceae for the evolution of downy mildews is highlighted by the observation that more than a third of the known genera of downy mildews occur on grasses, while more than 90 % of the known species of downy mildews infect eudicots.


Genome analyses of the sunflower pathogen Plasmopara halstedii provide insights into effector evolution in downy mildews and Phytophthora.

  • Rahul Sharma‎ et al.
  • BMC genomics‎
  • 2015‎

Downy mildews are the most speciose group of oomycetes and affect crops of great economic importance. So far, there is only a single deeply-sequenced downy mildew genome available, from Hyaloperonospora arabidopsidis. Further genomic resources for downy mildews are required to study their evolution, including pathogenicity effector proteins, such as RxLR effectors. Plasmopara halstedii is a devastating pathogen of sunflower and a potential pathosystem model to study downy mildews, as several Avr-genes and R-genes have been predicted and unlike Arabidopsis downy mildew, large quantities of almost contamination-free material can be obtained easily.


Genomic basis for drought resistance in European beech forests threatened by climate change.

  • Markus Pfenninger‎ et al.
  • eLife‎
  • 2021‎

In the course of global climate change, Central Europe is experiencing more frequent and prolonged periods of drought. The drought years 2018 and 2019 affected European beeches (Fagus sylvatica L.) differently: even in the same stand, drought-damaged trees neighboured healthy trees, suggesting that the genotype rather than the environment was responsible for this conspicuous pattern. We used this natural experiment to study the genomic basis of drought resistance with Pool-GWAS. Contrasting the extreme phenotypes identified 106 significantly associated single-nucleotide polymorphisms (SNPs) throughout the genome. Most annotated genes with associated SNPs (>70%) were previously implicated in the drought reaction of plants. Non-synonymous substitutions led either to a functional amino acid exchange or premature termination. An SNP assay with 70 loci allowed predicting drought phenotype in 98.6% of a validation sample of 92 trees. Drought resistance in European beech is a moderately polygenic trait that should respond well to natural selection, selective management, and breeding.


Gene loss rather than gene gain is associated with a host jump from monocots to dicots in the Smut Fungus Melanopsichium pennsylvanicum.

  • Rahul Sharma‎ et al.
  • Genome biology and evolution‎
  • 2014‎

Smut fungi are well-suited to investigate the ecology and evolution of plant pathogens, as they are strictly biotrophic, yet cultivable on media. Here we report the genome sequence of Melanopsichium pennsylvanicum, closely related to Ustilago maydis and other Poaceae-infecting smuts, but parasitic to a dicot plant. To explore the evolutionary patterns resulting from host adaptation after this huge host jump, the genome of Me. pennsylvanicum was sequenced and compared with the genomes of U. maydis, Sporisorium reilianum, and U. hordei. Although all four genomes had a similar completeness in CEGMA (Core Eukaryotic Genes Mapping Approach) analysis, gene absence was highest in Me. pennsylvanicum, and most pronounced in putative secreted proteins, which are often considered as effector candidates. In contrast, the amount of private genes was similar among the species, highlighting that gene loss rather than gene gain is the hallmark of adaptation after the host jump to the dicot host. Our analyses revealed a trend of putative effectors to be next to another putative effector, but the majority of these are not in clusters and thus the focus on pathogenicity clusters might not be appropriate for all smut genomes. Positive selection studies revealed that Me. pennsylvanicum has the highest number and proportion of genes under positive selection. In general, putative effectors showed a higher proportion of positively selected genes than noneffector candidates. The 248 putative secreted effectors found in all four smut genomes might constitute a core set needed for pathogenicity, whereas those 92 that are found in all grass-parasitic smuts but have no ortholog in Me. pennsylvanicum might constitute a set of effectors important for successful colonization of grass hosts.


An Illumina metabarcoding pipeline for fungi.

  • Miklós Bálint‎ et al.
  • Ecology and evolution‎
  • 2014‎

High-throughput metabarcoding studies on fungi and other eukaryotic microorganisms are rapidly becoming more frequent and more complex, requiring researchers to handle ever increasing amounts of raw sequence data. Here, we provide a flexible pipeline for pruning and analyzing fungal barcode (ITS rDNA) data generated as paired-end reads on Illumina MiSeq sequencers. The pipeline presented includes specific steps fine-tuned for ITS, that are mostly missing from pipelines developed for prokaryotes. It (1) employs state of the art programs and follows best practices in fungal high-throughput metabarcoding; (2) consists of modules and scripts easily modifiable by the user to ensure maximum flexibility with regard to specific needs of a project or future methodological developments; and (3) is straightforward to use, also in classroom settings. We provide detailed descriptions and revision techniques for each step, thus giving the user maximum control over data treatment and avoiding a black-box approach. Employing this pipeline will improve and speed up the tedious and error-prone process of cleaning fungal Illumina metabarcoding data.


Asexual and sexual morphs of Moesziomyces revisited.

  • Julia Kruse‎ et al.
  • IMA fungus‎
  • 2017‎

Yeasts of the now unused asexually typified genus Pseudozyma belong to the smut fungi (Ustilaginales) and are mostly believed to be apathogenic asexual yeasts derived from smut fungi that have lost pathogenicity on plants. However, phylogenetic studies have shown that most Pseudozyma species are phylogenetically close to smut fungi parasitic to plants, suggesting that some of the species might represent adventitious isolations of the yeast morph of otherwise plant pathogenic smut fungi. However, there are some species, such as Moesziomyces aphidis (syn. Pseudozyma aphidis) that are isolated throughout the world and sometimes are also found in clinical samples and do not have a known plant pathogenic sexual morph. In this study, it is revealed by phylogenetic investigations that isolates of the biocontrol agent Moesziomyces aphidis are interspersed with M. bullatus sexual lineages, suggesting conspecificity. This raises doubts regarding the apathogenic nature of asexual morphs previously placed in Pseudozyma, but suggests that there might also be pathogenic sexual morph counterparts for those species known only from asexual morphs. The finding that several additional species currently only known from their yeast morphs are embedded within the genus Moesziomyces, suggests that the yeast morph might play a more dominant role in this genus as compared to other genera of Ustilaginaceae. In addition, phylogenetic reconstructions demonstrated that Moesziomyces bullatus has a narrow host range and that some previously described but not widely used species names should be applied for Moesziomyces on other host genera than Echinochloa.


Adaptive differentiation coincides with local bioclimatic conditions along an elevational cline in populations of a lichen-forming fungus.

  • Francesco Dal Grande‎ et al.
  • BMC evolutionary biology‎
  • 2017‎

Many fungal species occur across a variety of habitats. Particularly lichens, fungi forming symbioses with photosynthetic partners, have evolved remarkable tolerances for environmental extremes. Despite their ecological importance and ubiquity, little is known about the genetic basis of adaption in lichen populations. Here we studied patterns of genome-wide differentiation in the lichen-forming fungus Lasallia pustulata along an altitudinal gradient in the Mediterranean region. We resequenced six populations as pools and identified highly differentiated genomic regions. We then detected gene-environment correlations while controlling for shared population history and pooled sequencing bias, and performed ecophysiological experiments to assess fitness differences of individuals from different environments.


Unambiguous identification of fungi: where do we stand and how accurate and precise is fungal DNA barcoding?

  • Robert Lücking‎ et al.
  • IMA fungus‎
  • 2020‎

True fungi (Fungi) and fungus-like organisms (e.g. Mycetozoa, Oomycota) constitute the second largest group of organisms based on global richness estimates, with around 3 million predicted species. Compared to plants and animals, fungi have simple body plans with often morphologically and ecologically obscure structures. This poses challenges for accurate and precise identifications. Here we provide a conceptual framework for the identification of fungi, encouraging the approach of integrative (polyphasic) taxonomy for species delimitation, i.e. the combination of genealogy (phylogeny), phenotype (including autecology), and reproductive biology (when feasible). This allows objective evaluation of diagnostic characters, either phenotypic or molecular or both. Verification of identifications is crucial but often neglected. Because of clade-specific evolutionary histories, there is currently no single tool for the identification of fungi, although DNA barcoding using the internal transcribed spacer (ITS) remains a first diagnosis, particularly in metabarcoding studies. Secondary DNA barcodes are increasingly implemented for groups where ITS does not provide sufficient precision. Issues of pairwise sequence similarity-based identifications and OTU clustering are discussed, and multiple sequence alignment-based phylogenetic approaches with subsequent verification are recommended as more accurate alternatives. In metabarcoding approaches, the trade-off between speed and accuracy and precision of molecular identifications must be carefully considered. Intragenomic variation of the ITS and other barcoding markers should be properly documented, as phylotype diversity is not necessarily a proxy of species richness. Important strategies to improve molecular identification of fungi are: (1) broadly document intraspecific and intragenomic variation of barcoding markers; (2) substantially expand sequence repositories, focusing on undersampled clades and missing taxa; (3) improve curation of sequence labels in primary repositories and substantially increase the number of sequences based on verified material; (4) link sequence data to digital information of voucher specimens including imagery. In parallel, technological improvements to genome sequencing offer promising alternatives to DNA barcoding in the future. Despite the prevalence of DNA-based fungal taxonomy, phenotype-based approaches remain an important strategy to catalog the global diversity of fungi and establish initial species hypotheses.


The rise and fall of the Phytophthora infestans lineage that triggered the Irish potato famine.

  • Kentaro Yoshida‎ et al.
  • eLife‎
  • 2013‎

Phytophthora infestans, the cause of potato late blight, is infamous for having triggered the Irish Great Famine in the 1840s. Until the late 1970s, P. infestans diversity outside of its Mexican center of origin was low, and one scenario held that a single strain, US-1, had dominated the global population for 150 years; this was later challenged based on DNA analysis of historical herbarium specimens. We have compared the genomes of 11 herbarium and 15 modern strains. We conclude that the 19th century epidemic was caused by a unique genotype, HERB-1, that persisted for over 50 years. HERB-1 is distinct from all examined modern strains, but it is a close relative of US-1, which replaced it outside of Mexico in the 20th century. We propose that HERB-1 and US-1 emerged from a metapopulation that was established in the early 1800s outside of the species' center of diversity. DOI:http://dx.doi.org/10.7554/eLife.00731.001.


Community barcoding reveals little effect of ocean acidification on the composition of coastal plankton communities: Evidence from a long-term mesocosm study in the Gullmar Fjord, Skagerrak.

  • Julia A F Langer‎ et al.
  • PloS one‎
  • 2017‎

The acidification of the oceans could potentially alter marine plankton communities with consequences for ecosystem functioning. While several studies have investigated effects of ocean acidification on communities using traditional methods, few have used genetic analyses. Here, we use community barcoding to assess the impact of ocean acidification on the composition of a coastal plankton community in a large scale, in situ, long-term mesocosm experiment. High-throughput sequencing resulted in the identification of a wide range of planktonic taxa (Alveolata, Cryptophyta, Haptophyceae, Fungi, Metazoa, Hydrozoa, Rhizaria, Straminipila, Chlorophyta). Analyses based on predicted operational taxonomical units as well as taxonomical compositions revealed no differences between communities in high CO2 mesocosms (~ 760 μatm) and those exposed to present-day CO2 conditions. Observed shifts in the planktonic community composition were mainly related to seasonal changes in temperature and nutrients. Furthermore, based on our investigations, the elevated CO2 did not affect the intraspecific diversity of the most common mesozooplankter, the calanoid copepod Pseudocalanus acuspes. Nevertheless, accompanying studies found temporary effects attributed to a raise in CO2. Differences in taxa composition between the CO2 treatments could, however, only be observed in a specific period of the experiment. Based on our genetic investigations, no compositional long-term shifts of the plankton communities exposed to elevated CO2 conditions were observed. Thus, we conclude that the compositions of planktonic communities, especially those in coastal areas, remain rather unaffected by increased CO2.


The oomycete Lagenisma coscinodisci hijacks host alkaloid synthesis during infection of a marine diatom.

  • Marine Vallet‎ et al.
  • Nature communications‎
  • 2019‎

Flagellated oomycetes frequently infect unicellular algae, thus limiting their proliferation. Here we show that the marine oomycete Lagenisma coscinodisci rewires the metabolome of the bloom-forming diatom Coscinodiscus granii, thereby promoting infection success. The algal alkaloids β-carboline and 4-carboxy-2,3,4,9-tetrahydro-1H-β-carboline are induced during infection. Single-cell profiling with AP-MALDI-MS and confocal laser scanning microscopy reveals that algal carbolines accumulate in the reproductive form of the parasite. The compounds arrest the algal cell division, increase the infection rate and induce plasmolysis in the host. Our results indicate that the oomycete manipulates the host metabolome to support its own multiplication.


A glimpse into the biogeography, seasonality, and ecological functions of arctic marine Oomycota.

  • Brandon T Hassett‎ et al.
  • IMA fungus‎
  • 2019‎

High-latitude environments are warming, leading to changes in biological diversity patterns of taxa. Oomycota are a group of fungal-like organisms that comprise a major clade of eukaryotic life and are parasites of fish, agricultural crops, and algae. The diversity, functionality, and distribution of these organisms are essentially unknown in the Arctic marine environment. Thus, it was our aim to conduct a first screening, using a functional gene assay and high-throughput sequencing of two gene regions within the 18S rRNA locus to examine the diversity, richness, and phylogeny of marine Oomycota within Arctic sediment, seawater, and sea ice. We detected Oomycota at every site sampled and identified regionally localized taxa, as well as taxa that existed in both Alaska and Svalbard. While the recently described diatom parasite Miracula helgolandica made up about 50% of the oomycete reads found, many lineages were observed that could not be assigned to known species, including several that clustered with another recently described diatom parasite, Olpidiopsis drebesii. Across the Arctic, Oomycota comprised a maximum of 6% of the entire eukaryotic microbial community in Barrow, Alaska May sediment and 10% in sea ice near the Svalbard archipelago. We found Arctic marine Oomycota encode numerous genes involved in parasitism and carbon cycling processes. Ultimately, these data suggest that Arctic marine Oomycota are a reservoir of uncharacterized biodiversity, the majority of which are probably parasites of diatoms, while others might cryptically cycle carbon or interface other unknown ecological processes. As the Arctic continues to warm, lower-latitude Oomycota might migrate into the Arctic Ocean and parasitize non-coevolved hosts, leading to incalculable shifts in the primary producer community.


Genome comparisons provide insights into the role of secondary metabolites in the pathogenic phase of the Photorhabdus life cycle.

  • Nicholas J Tobias‎ et al.
  • BMC genomics‎
  • 2016‎

Bacteria within the genus Photorhabdus maintain mutualistic symbioses with nematodes in complicated lifecycles that also involves insect pathogenic phases. Intriguingly, these bacteria are rich in biosynthetic gene clusters that produce compounds with diverse biological activities. As a basis to better understand the life cycles of Photorhabdus we sequenced the genomes of two recently discovered representative species and performed detailed genomic comparisons with five publically available genomes.


Host Jumps and Radiation, Not Co-Divergence Drives Diversification of Obligate Pathogens. A Case Study in Downy Mildews and Asteraceae.

  • Young-Joon Choi‎ et al.
  • PloS one‎
  • 2015‎

Even though the microevolution of plant hosts and pathogens has been intensely studied, knowledge regarding macro-evolutionary patterns is limited. Having the highest species diversity and host-specificity among Oomycetes, downy mildews are a useful a model for investigating long-term host-pathogen coevolution. We show that phylogenies of Bremia and Asteraceae are significantly congruent. The accepted hypothesis is that pathogens have diverged contemporarily with their hosts. But maximum clade age estimation and sequence divergence comparison reveal that congruence is not due to long-term coevolution but rather due to host-shift driven speciation (pseudo-cospeciation). This pattern results from parasite radiation in related hosts, long after radiation and speciation of the hosts. As large host shifts free pathogens from hosts with effector triggered immunity subsequent radiation and diversification in related hosts with similar innate immunity may follow, resulting in a pattern mimicking true co-divergence, which is probably limited to the terminal nodes in many pathogen groups.


Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire.

  • C André Lévesque‎ et al.
  • Genome biology‎
  • 2010‎

Pythium ultimum is a ubiquitous oomycete plant pathogen responsible for a variety of diseases on a broad range of crop and ornamental species.


The inclusion of downy mildews in a multi-locus-dataset and its reanalysis reveals a high degree of paraphyly in Phytophthora.

  • Fabian Runge‎ et al.
  • IMA fungus‎
  • 2011‎

Pathogens belonging to the Oomycota, a group of heterokont, fungal-like organisms, are amongst the most notorious pathogens in agriculture. In particular, the obligate biotrophic downy mildews and the hemibiotrophic members of the genus Phytophthora are responsible for a huge variety of destructive diseases, including sudden oak death caused by P. ramorum, potato late blight caused by P. infestans, cucurbit downy mildew caused by Pseudoperonospora cubensis, and grape downy mildew caused by Plasmopara viticola. About 800 species of downy mildews and roughly 100 species of Phytophthora are currently accepted, and recent studies have revealed that these groups are closely related. However, the degree to which Phytophthora is paraphyletic and where exactly the downy mildews insert into this genus in relation to other clades could not be inferred with certainty to date. Here we present a molecular phylogeny encompassing all clades of Phytophthora as represented in a multi-locus dataset and two representatives of the monophyletic downy mildews from divergent genera. Our results demonstrate that Phytophthora is at least six times paraphyletic with respect to the downy mildews. The downy mildew representatives are consistently nested within clade 4 (contains Phytophthora palmivora), which is placed sister to clade 1 (contains Phytophthora infestans). This finding would either necessitate placing all downy mildews and Phytopthora species in a single genus, either under the oldest generic name Peronospora or by conservation the later name Phytophthora, or the description of at least six new genera within Phytophthora. The complications of both options are discussed, and it is concluded that the latter is preferable, as it warrants fewer name changes and is more practical.


Comparative Genomics Including the Early-Diverging Smut Fungus Ceraceosorus bombacis Reveals Signatures of Parallel Evolution within Plant and Animal Pathogens of Fungi and Oomycetes.

  • Rahul Sharma‎ et al.
  • Genome biology and evolution‎
  • 2015‎

Ceraceosorus bombacis is an early-diverging lineage of smut fungi and a pathogen of cotton trees (Bombax ceiba). To study the evolutionary genomics of smut fungi in comparison with other fungal and oomycete pathogens, the genome of C. bombacis was sequenced and comparative genomic analyses were performed. The genome of 26.09 Mb encodes for 8,024 proteins, of which 576 are putative-secreted effector proteins (PSEPs). Orthology analysis revealed 30 ortholog PSEPs among six Ustilaginomycotina genomes, the largest groups of which are lytic enzymes, such as aspartic peptidase and glycoside hydrolase. Positive selection analyses revealed the highest percentage of positively selected PSEPs in C. bombacis compared with other Ustilaginomycotina genomes. Metabolic pathway analyses revealed the absence of genes encoding for nitrite and nitrate reductase in the genome of the human skin pathogen Malassezia globosa, but these enzymes are present in the sequenced plant pathogens in smut fungi. Interestingly, these genes are also absent in cultivable oomycete animal pathogens, while nitrate reductase has been lost in cultivable oomycete plant pathogens. Similar patterns were also observed for obligate biotrophic and hemi-biotrophic fungal and oomycete pathogens. Furthermore, it was found that both fungal and oomycete animal pathogen genomes are lacking cutinases and pectinesterases. Overall, these findings highlight the parallel evolution of certain genomic traits, revealing potential common evolutionary trajectories among fungal and oomycete pathogens, shaping the pathogen genomes according to their lifestyle.


The genome sequence of the commercially cultivated mushroom Agrocybe aegerita reveals a conserved repertoire of fruiting-related genes and a versatile suite of biopolymer-degrading enzymes.

  • Deepak K Gupta‎ et al.
  • BMC genomics‎
  • 2018‎

Agrocybe aegerita is an agaricomycete fungus with typical mushroom features, which is commercially cultivated for its culinary use. In nature, it is a saprotrophic or facultative pathogenic fungus causing a white-rot of hardwood in forests of warm and mild climate. The ease of cultivation and fructification on solidified media as well as its archetypal mushroom fruit body morphology render A. aegerita a well-suited model for investigating mushroom developmental biology.


The first smut fungus, Thecaphoraanthemidis sp. nov. (Glomosporiaceae), described from Anthemis (Asteraceae).

  • Julia Kruse‎ et al.
  • MycoKeys‎
  • 2018‎

There are 63 known species of Thecaphora (Glomosporiaceae, Ustilaginomycotina), a third of which occur on Asteraceae. These smut fungi produce yellowish-brown to reddish-brown masses of spore balls in specific, mostly regenerative, plant organs. A species of Thecaphora was collected in the flower heads of Anthemischia (Anthemideae, Asteraceae) on Rhodes Island, Greece, in 2015 and 2017, which represents the first smut record of a smut fungus on a host plant species in this tribe. Based on its distinctive morphology, host species and genetic divergence, this species is described as Thecaphoraanthemidis sp. nov. Molecular barcodes of the ITS region are provided for this and several other species of Thecaphora. A phylogenetic and morphological comparison to closely related species showed that Th.anthemidis differed from other species of Thecaphora. Thecaphoraanthemidis produced loose spore balls in the flower heads and peduncles of Anthemischia unlike other flower-infecting species.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: