Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Inhibition of Rho-Associated Kinase Suppresses Medulloblastoma Growth.

  • Cecilia Dyberg‎ et al.
  • Cancers‎
  • 2019‎

Medulloblastoma is one of the most common malignant brain tumor types in children, with an overall survival of 70%. Mortality is associated with metastatic relapsed tumors. Rho-associated kinases (ROCKs), important for epithelial-mesenchymal transition (EMT) and proper nervous system development, have previously been identified as a promising drug target to inhibit cancer growth and metastatic spread. Here, we show that ROCKs are expressed in medulloblastoma, with higher ROCK2 mRNA expression in metastatic compared to non-metastatic tumors. By evaluating three ROCK inhibitors in a panel of medulloblastoma cell lines we demonstrated that medulloblastoma cells were sensitive for pharmacological ROCK inhibition. The specific ROCK inhibitor RKI-1447 inhibited the tumorigenicity in medulloblastoma cells as well as impeded cell migration and invasion. Differential gene expression analysis suggested that ROCK inhibition was associated with the downregulation of signaling pathways important in proliferation and metastasis e.g., TNFα via NFκβ, TGFβ, and EMT. Expression of key proteins in these pathways such as RHOA, RHOB, JUN, and vimentin was downregulated in ROCK inhibited cells. Finally, we showed that ROCK inhibition by RKI-1447 suppressed medulloblastoma growth and proliferation in vivo. Collectively, our results suggest that ROCK inhibition presents a potential new therapeutic option in medulloblastoma, especially for children with metastatic disease.


Gliosarcoma Is Driven by Alterations in PI3K/Akt, RAS/MAPK Pathways and Characterized by Collagen Gene Expression Signature.

  • Bartosz Wojtas‎ et al.
  • Cancers‎
  • 2019‎

Gliosarcoma is a very rare brain tumor reported to be a variant of glioblastoma (GBM), IDH-wildtype. While differences in molecular and histological features between gliosarcoma and GBM were reported, detailed information on the genetic background of this tumor is lacking. We intend to fill in this knowledge gap by the complex analysis of somatic mutations, indels, copy number variations, translocations and gene expression patterns in gliosarcomas. Using next generation sequencing, we determined somatic mutations, copy number variations (CNVs) and translocations in 10 gliosarcomas. Six tumors have been further subjected to RNA sequencing analysis and gene expression patterns have been compared to those of GBMs. We demonstrate that gliosarcoma bears somatic alterations in gene coding for PI3K/Akt (PTEN, PI3K) and RAS/MAPK (NF1, BRAF) signaling pathways that are crucial for tumor growth. Interestingly, the frequency of PTEN alterations in gliosarcomas was much higher than in GBMs. Aberrations of PTEN were the most frequent and occurred in 70% of samples. We identified genes differentially expressed in gliosarcoma compared to GBM (including collagen signature) and confirmed a difference in the protein level by immunohistochemistry. We found several novel translocations (including translocations in the RABGEF1 gene) creating potentially unfavorable combinations. Collected results on genetic alterations and transcriptomic profiles offer new insights into gliosarcoma pathobiology, highlight differences in gliosarcoma and GBM genetic backgrounds and point out to distinct molecular cues for targeted treatment.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: