Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Establishment and characterization of an orthotopic patient-derived Group 3 medulloblastoma model for preclinical drug evaluation.

  • Emma Sandén‎ et al.
  • Scientific reports‎
  • 2017‎

Medulloblastomas comprise a heterogeneous group of tumours and can be subdivided into four molecular subgroups (WNT, SHH, Group 3 and Group 4) with distinct prognosis, biological behaviour and implications for targeted therapies. Few experimental models exist of the aggressive and poorly characterized Group 3 tumours. In order to establish a reproducible transplantable Group 3 medulloblastoma model for preclinical therapeutic studies, we acquired a patient-derived tumour sphere culture and inoculated low-passage spheres into the cerebellums of NOD-scid mice. Mice developed symptoms of brain tumours with a latency of 17-18 weeks. Neurosphere cultures were re-established and serially transplanted for 3 generations, with a negative correlation between tumour latency and numbers of injected cells. Xenografts replicated the phenotype of the primary tumour, including high degree of clustering in DNA methylation analysis, high proliferation, expression of tumour markers, MYC amplification and elevated MYC expression, and sensitivity to the MYC inhibitor JQ1. Xenografts maintained maintained expression of tumour-derived VEGFA and stromal-derived COX-2. VEGFA, COX-2 and c-Myc are highly expressed in Group 3 compared to other medulloblastoma subgroups, suggesting that these molecules are relevant therapeutic targets in Group 3 medulloblastoma.


Intratumoral administration of the antisecretory peptide AF16 cures murine gliomas and modulates macrophage functions.

  • Jan Kopecky‎ et al.
  • Scientific reports‎
  • 2022‎

Glioblastoma has remained the deadliest primary brain tumor while its current therapy offers only modest survival prolongation. Immunotherapy has failed to record notable benefits in routine glioblastoma treatment. Conventionally, immunotherapy relies on T cells as tumor-killing agents; however, T cells are outnumbered by macrophages in glioblastoma microenvironment. In this study, we explore the effect of AF16, a peptide from the endogenous antisecretory factor protein, on the survival of glioma-bearing mice, the tumor size, and characteristics of the tumor microenvironment with specific focus on macrophages. We elucidate the effect of AF16 on the inflammation-related secretome of human and murine macrophages, as well as human glioblastoma cells. In our results, AF16 alone and in combination with temozolomide leads to cure in immunocompetent mice with orthotopic GL261 gliomas, as well as prolonged survival in immunocompromised mice. We recorded decreased tumor size and changes in infiltration of macrophages and T cells in the murine glioma microenvironment. Human and murine macrophages increased expression of proinflammatory markers in response to AF16 treatment and the same effect was seen in human primary glioblastoma cells. In summary, we present AF16 as an immunomodulatory factor stimulating pro-inflammatory macrophages with a potential to be implemented in glioblastoma treatment protocols.


Unequivocal identification of intracellular aluminium adjuvant in a monocytic THP-1 cell line.

  • Matthew Mold‎ et al.
  • Scientific reports‎
  • 2014‎

Aluminium-based adjuvants (ABA) are the predominant adjuvants used in human vaccinations. While a consensus is yet to be reached on the aetiology of the biological activities of ABA several studies have identified shape, crystallinity and size as critical factors affecting their adjuvanticity. In spite of recent advances, the fate of ABA following their administration remains unclear. Few if any studies have demonstrated the unequivocal presence of intracellular ABA. Herein we demonstrate for the first time the unequivocal identification of ABA within a monocytic T helper 1 (THP-1) cell line, using lumogallion as a fluorescent molecular probe for aluminium. Use of these new methods revealed that particulate ABA was only found in the cell cytoplasm. Transmission electron microscopy revealed that ABA were contained within vesicle-like structures of approximately 0.5-1 μm in diameter.


A standardized and reproducible protocol for serum-free monolayer culturing of primary paediatric brain tumours to be utilized for therapeutic assays.

  • Emma Sandén‎ et al.
  • Scientific reports‎
  • 2015‎

In vitro cultured brain tumour cells are indispensable tools for drug screening and therapeutic development. Serum-free culture conditions tentatively preserve the features of the original tumour, but commonly comprise neurosphere propagation, which is a technically challenging procedure. Here, we define a simple, non-expensive and reproducible serum-free cell culture protocol for establishment and propagation of primary paediatric brain tumour cultures as adherent monolayers. The success rates for establishment of primary cultures (including medulloblastomas, atypical rhabdoid tumour, ependymomas and astrocytomas) were 65% (11/17) and 78% (14/18) for sphere cultures and monolayers respectively. Monolayer culturing was particularly feasible for less aggressive tumour subsets, where neurosphere cultures could not be generated. We show by immunofluorescent labelling that monolayers display phenotypic similarities with corresponding sphere cultures and primary tumours, and secrete clinically relevant inflammatory factors, including PGE2, VEGF, IL-6, IL-8 and IL-15. Moreover, secretion of PGE2 was considerably reduced by treatment with the COX-2 inhibitor Valdecoxib, demonstrating the functional utility of our newly established monolayer for preclinical therapeutic assays. Our findings suggest that this culture method could increase the availability and comparability of clinically representative in vitro models of paediatric brain tumours, and encourages further molecular evaluation of serum-free monolayer cultures.


The effect of locally delivered cisplatin is dependent on an intact immune function in an experimental glioma model.

  • Julio Enríquez Pérez‎ et al.
  • Scientific reports‎
  • 2019‎

Several chemotherapeutic drugs are now considered to exert anti-tumour effects, by inducing an immune-promoting inflammatory response. Cisplatin is a potent chemotherapeutic agent used in standard medulloblastoma but not glioblastoma protocols. There is no clear explanation for the differences in clinical efficacy of cisplatin between medulloblastomas and glioblastomas, despite the fact that cisplatin is effective in vitro against the latter. Systemic toxicity is often dose limiting but could tentatively be reduced by intratumoral administration. We found that intratumoral cisplatin can cure GL261 glioma-bearing C57BL/6 mice and this effect was abolished in GL261-bearing NOD-scid IL2rγnull (NSG) mice. Contrary to previous results with intratumoral temozolomide cisplatin had no additive or synergistic effect with whole cell either GL261 wild-type or GM-CSF-transfected GL261 cells whole cell vaccine-based immunotherapy. While whole tumour cell immunizations increased CD8+ T-cells and decreased F4/80+ macrophages intratumorally, cisplatin had no effect on these cell populations. Taken together, our results demonstrate that intratumoral cisplatin treatment was effective with a narrow therapeutic window and may be an efficient approach for glioma or other brain tumour treatment.


The AHR pathway represses TGFβ-SMAD3 signalling and has a potent tumour suppressive role in SHH medulloblastoma.

  • Nemanja Sarić‎ et al.
  • Scientific reports‎
  • 2020‎

Sonic Hedgehog (SHH) medulloblastomas are brain tumours that arise in the posterior fossa. Cancer-propagating cells (CPCs) provide a reservoir of cells capable of tumour regeneration and relapse post-treatment. Understanding and targeting the mechanisms by which CPCs are maintained and expanded in SHH medulloblastoma could present novel therapeutic opportunities. We identified the aryl hydrocarbon receptor (AHR) pathway as a potent tumour suppressor in a SHH medulloblastoma mouse model. Ahr-deficient tumours and CPCs grown in vitro, showed elevated activation of the TGFβ mediator, SMAD3. Pharmacological inhibition of the TGFβ/SMAD3 signalling axis was sufficient to inhibit the proliferation and promote the differentiation of Ahr-deficient CPCs. Human SHH medulloblastomas with high expression of the AHR repressor (AHRR) exhibited a significantly worse prognosis compared to AHRRlow tumours in two independent patient cohorts. Together, these findings suggest that reduced AHR pathway activity promotes SHH medulloblastoma progression, consistent with a tumour suppressive role for AHR. We propose that TGFβ/SMAD3 inhibition may represent an actionable therapeutic approach for a subset of aggressive SHH medulloblastomas characterised by reduced AHR pathway activity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: