Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 3 papers out of 3 papers

Appropriate Application Methods for Salicylic Acid and Plant Nutrients Combinations to Promote Morpho-Physiological Traits, Production, and Water Use Efficiency of Wheat under Normal and Deficit Irrigation in an Arid Climate.

  • Majed Alotaibi‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2023‎

Freshwater shortage and inadequate nutrient management are the two major challenges for sustainable wheat production in arid agro-ecosystems. Relatively little is known about the positive roles of the application methods for the combination of salicylic acid (SA) and plant nutrients in sustaining wheat production under arid climatic conditions. A two-year field study was undertaken to assess the impact of seven treatments for the integrated application of SA, macronutrients, and micronutrients on the morpho-physiological traits, yield, and irrigation water use efficiency (IWUE) of wheat subjected to full (FL) and limited (LM) irrigation regimes. The results showed that the LM regime caused a significant reduction in different plant growth traits, relative water content, chlorophyll pigments, yield components, and yield, while a significant increase was observed in IWUE. The sole application of SA or co-application with micronutrients through soil did not significantly affect the studied traits under the FL regime, while they achieved some improvement over untreated plants under the LM regime. Based on the different multivariate analyses, the soil and foliar applications for the combinations of SA and micronutrients, as well as a foliar application for the combinations of SA, macronutrients, and micronutrients were identified as an efficient option for mitigating the negative impacts of water deficit stress and enhancing the growth and production of wheat under normal conditions. In conclusion, the results obtained herein indicated that the co-application of SA and macro- and micronutrients is an effective option to greatly enhance and improve the growth and production of wheat crops in water-scarce countries of arid regions, such as Saudi Arabia, while an appropriate application method for this combination was required for positive effects.


Use of Hyperspectral Reflectance Sensing for Assessing Growth and Chlorophyll Content of Spring Wheat Grown under Simulated Saline Field Conditions.

  • Salah El-Hendawy‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2021‎

The application of proximal hyperspectral sensing, using simple vegetation indices, offers an easy, fast, and non-destructive approach for assessing various plant variables related to salinity tolerance. Because most existing indices are site- and species-specific, published indices must be further validated when they are applied to other conditions and abiotic stress. This study compared the performance of various published and newly constructed indices, which differ in algorithm forms and wavelength combinations, for remotely assessing the shoot dry weight (SDW) as well as chlorophyll a (Chla), chlorophyll b (Chlb), and chlorophyll a+b (Chlt) content of two wheat genotypes exposed to three salinity levels. Stepwise multiple linear regression (SMLR) was used to extract the most influential indices within each spectral reflectance index (SRI) type. Linear regression based on influential indices was applied to predict plant variables in distinct conditions (genotypes, salinity levels, and seasons). The results show that salinity levels, genotypes, and their interaction had significant effects (p ≤ 0.05 and 0.01) on all plant variables and nearly all indices. Almost all indices within each SRI type performed favorably in estimating the plant variables under both salinity levels (6.0 and 12.0 dS m-1) and for the salt-sensitive genotype Sakha 61. The most effective indices extracted from each SRI type by SMLR explained 60%-81% of the total variability in four plant variables. The various predictive models provided a more accurate estimation of Chla and Chlt content than of SDW and Chlb under both salinity levels. They also provided a more accurate estimation of SDW than of Chl content for salt-tolerant genotype Sakha 93, exhibited strong performance for predicting the four variables for Sakha 61, and failed to predict any variables under control and Chlb for Sakha 93. The overall results indicate that the simple form of indices can be used in practice to remotely assess the growth and chlorophyll content of distinct wheat genotypes under saline field conditions.


Assessing the Correlations between Different Traits in Copper-Sensitive and Copper-Resistant Varieties of Jute (Corchorus capsularis L.).

  • Muhammad Hamzah Saleem‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2019‎

The current study was conducted to explore the potential for phytoremediation in different varieties of jute grown under toxic concentrations of copper (Cu). For this purpose, a Petri dish experiment was conducted under controlled conditions using four varieties of jute, i.e., HongTieGuXuan, C-3, GuBaChangaJia, and ShangHuoMa, grown in double filter paper under 50 µmol L-1 of artificially spiked copper (Cu) using CuSO4.H2O. The results of the present study revealed that jute varieties C-3 and HongTieGuXuan were able to survive under high concentrations of Cu without a significant decrease in plant height, plant fresh and dry weights, total chlorophyll content, or seed germination, while varieties GuBaChangaJia and ShangHuoMa exhibited a significant reduction in their growth and biomass. Furthermore, high concentrations of Cu in the medium resulted in lipid peroxidation. This could be due to the oxidative damage induced in the roots and leaves of the jute varieties, which might be a result of by hydrogen peroxide (H2O2) and electrolyte leakage. Reactive oxygen species (ROS) generated due to Cu toxicity can be overcome by the increasing activity of antioxidants, and it was also noted that GuBaChangaJia and ShangHuoMa exhibited high Cu stress, while C-3 and HongTieGuXuan showed some resistance to Cu toxicity. Contrastingly, Cu accumulation and uptake was higher in C-3 and HongTieGuXuan, while a little Cu was accumulated in the roots and leaves of GuBaChangaJia and ShangHuoMa. On the basis of these findings, it can be suggested that C-3 and HongTieGuXuan have the potential to cope with Cu stress and can be considered Cu-resistant varieties, while GuBaChangaJia and ShangHuoMa are considered Cu-sensitive varieties. Moreover, C-3 and HongTieGuXuan have the potential to revoke large amounts of Cu, and can be cultivated as phytoremediation tools in Cu-contaminated soil.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: