Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Akabane virus nonstructural protein NSm regulates viral growth and pathogenicity in a mouse model.

  • Yukari Ishihara‎ et al.
  • The Journal of veterinary medical science‎
  • 2016‎

The biological function of a nonstructural protein, NSm, of Akabane virus (AKAV) is unknown. In this study, we generated a series of NSm deletion mutant viruses by reverse genetics and compared their phenotypes. The mutant in which the NSm coding region was almost completely deleted could not be rescued, suggesting that NSm plays a role in virus replication. We next generated mutant viruses possessing various partial deletions in NSm and identified several regions critical for virus infectivity. All rescued mutant viruses produced smaller plaques and grew inefficiently in cell culture, compared to the wild-type virus. Interestingly, although the pathogenicity of NSm deletion mutant viruses varied in mice depending on their deletion regions and sizes, more than half the mice died following infection with any mutant virus and the dead mice exhibited encephalitis as in wild-type virus-inoculated mice, indicating their neuroinvasiveness. Abundant viral antigens were detected in the brain tissues of dead mice, whereas appreciable antigen was not observed in those of surviving mice, suggesting a correlation between virus growth rate in the brain and neuropathogenicity in mice. We conclude that NSm affects AKAV replication in vitro as well as in vivo and that it may function as a virulence factor.


Identification and antimicrobial susceptibility of microorganisms isolated from severe corneal ulcers of dogs in Thailand.

  • Daneeya Ekapopphan‎ et al.
  • The Journal of veterinary medical science‎
  • 2018‎

This study aims to determine the microbiological profile and risk factors associated with antimicrobial-resistant bacteria in canine severe corneal ulcers. Thirty-two corneal and conjunctival swabs were collected from dogs with diagnosed severe corneal ulcers that presented to Prasu-Arthorn veterinary teaching hospital in Nakhon Pathom, Thailand from June 2015 to June 2016. Microorganisms were identified by means of genotypic and phenotypic approaches. Of 32 ulcers sampled, 26 (81.3%) yielded culturable microorganisms with 24 bacterial isolates and 7 fungal isolates. The most commonly isolated bacteria were Staphylococcus spp. (45.8%, 11/24) and Pseudomonas aeruginosa (20.8%, 5/24). Out of 11 staphylococcal isolates identified, 10 carried the mecA gene providing methicillin resistance. The extended-spectrum β-lactamase (ESBL) encoding genes blaCTX-M and blaVEB-1 were found in an Acinetobacter lwoffii isolate, and blaSHV was found in a P. aeruginosa isolate. Based on the Clinical Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) breakpoint criteria, minimum inhibitory concentrations values showed that all bacteria, except for staphylococci, were susceptible to current ophthalmic antibiotics. More than 50% of staphylococci were resistant to all generations of fluoroquinolones and fusidic acid. Chloramphenicol was highly active against staphylococci (81.3% susceptible). The width (P=0.02) and the depth (P=0.04) of ulcers predicted greater risk of yielding resistant bacteria. The identification of antimicrobial-resistant bacteria prompts practitioners to be prudent when choosing ophthalmic antibiotics for severe corneal ulcers.


Effects of Piper betle Extracts against Biofilm Formation by Methicillin-Resistant Staphylococcus pseudintermedius Isolated from Dogs.

  • Arpron Leesombun‎ et al.
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2023‎

Emergence of methicillin-resistant Staphylococcus pseudintermedius (MRSP) isolated from dogs with cutaneous and wound infections has significantly impacted veterinary medicine. This study aimed to isolate S. pseudintermedius from canine pyoderma and investigate the effects of ethanolic extracts of Piper betle (PB), P. sarmentosum (PS), and P. nigrum (PN) on the bacterial growth and biofilm formation of S. pseudintermedius and MRSP. Of the isolated 152 isolates, 53 were identified as S. pseudintermedius using polymerase chain reaction, and 10 isolates (6.58%) were identified as MRSP based on the presence of mecA. Based on phenotype, 90% of MRSPs were multidrug-resistant. All MRSP had moderate (10%, 1/10) and strong (90%, 9/10) biofilm production ability. PB extracts were the most effective in inhibiting planktonic cells, and the minimum inhibitory concentration at which ≥50% of the isolates were inhibited (MIC50) was 256 µg/mL (256-1024 µg/mL) for S. pseudintermedius isolates and 512 µg/mL (256-1024 µg/mL) for MRSP isolates. The MIC90 for S. pseudintermedius and MRSP was 512 µg/mL. In XTT assay, PB at 4× MIC showed an inhibition rate of 39.66-68.90% and 45.58-59.13% for S. pseudintermedius and MRSP, respectively, in inhibiting biofilm formation. For PB at 8× MIC, the inhibition rates for S. pseudintermedius and MRSP were 50.74-81.66% and 59.57-78.33%, respectively. Further, 18 compounds were identified in PB using gas chromatography-mass spectrometry, and hydroxychavicol (36.02%) was the major constituent. These results indicated that PB could inhibit bacteria growth of and biofilm formation by S. pseudintermedius and MRSP isolated from canine pyoderma in a concentration-dependent manner. Therefore, PB is a potential candidate for the treatment of MRSP infection and biofilm formation in veterinary medicine.


Bat coronaviruses and experimental infection of bats, the Philippines.

  • Shumpei Watanabe‎ et al.
  • Emerging infectious diseases‎
  • 2010‎

Fifty-two bats captured during July 2008 in the Philippines were tested by reverse transcription-PCR to detect bat coronavirus (CoV) RNA. The overall prevalence of virus RNA was 55.8%. We found 2 groups of sequences that belonged to group 1 (genus Alphacoronavirus) and group 2 (genus Betacoronavirus) CoVs. Phylogenetic analysis of the RNA-dependent RNA polymerase gene showed that groups 1 and 2 CoVs were similar to Bat-CoV/China/A515/2005 (95% nt sequence identity) and Bat-CoV/HKU9-1/China/2007 (83% identity), respectively. To propagate group 2 CoVs obtained from a lesser dog-faced fruit bat (Cynopterus brachyotis), we administered intestine samples orally to Leschenault rousette bats (Rousettus leschenaulti) maintained in our laboratory. After virus replication in the bats was confirmed, an additional passage of the virus was made in Leschenault rousette bats, and bat pathogenesis was investigated. Fruit bats infected with virus did not show clinical signs of infection.


Akabane virus utilizes alternative endocytic pathways to entry into mammalian cell lines.

  • Norasuthi Bangphoomi‎ et al.
  • The Journal of veterinary medical science‎
  • 2014‎

The entry mechanisms of Akabane virus (AKAV), Bunyaviridae family, have not yet been determined. In this study, chemical inhibitors were used to analyze endocytic mechanisms during AKAV infection of mammalian cell lines. The analyses using drug treatments followed by quantitative measurement of viral RNA and N protein revealed that AKAV enters non-bovine-derived cell lines (Vero, HmLu-1 and BHK cells) in a manner indicative of clathrin endocytosis. By contrast, AKAV infection in bovine-derived cell lines (LB9.K and MDBK cells) is independent of this pathway. Further analyses indicated that AKAV entry into bovine cell lines involves a non-clathrin, non-caveolae endocytic pathway that is dependent on dynamin. We conclude that although both cell types require a low pH for AKAV penetration, AKAV utilizes alternative entry pathways into mammalian cell lines.


Herpes Simplex Virus 1 VP22 Inhibits AIM2-Dependent Inflammasome Activation to Enable Efficient Viral Replication.

  • Yuhei Maruzuru‎ et al.
  • Cell host & microbe‎
  • 2018‎

The AIM2 inflammasome is activated by DNA, leading to caspase-1 activation and release of pro-inflammatory cytokines interleukin 1β (IL-1β) and IL-18, which are critical mediators in host innate immune responses against various pathogens. Some viruses employ strategies to counteract inflammasome-mediated induction of pro-inflammatory cytokines, but their in vivo relevance is less well understood. Here we show that the herpes simplex virus 1 (HSV-1) tegument protein VP22 inhibits AIM2-dependent inflammasome activation. VP22 interacts with AIM2 and prevents its oligomerization, an initial step in AIM2 inflammasome activation. A mutant virus lacking VP22 (HSV-1ΔVP22) activates AIM2 and induces IL-1β and IL-18 secretion, but these responses are lost in the absence of AIM2. Additionally, HSV-1ΔVP22 infection results in diminished viral yields in vivo, but HSV-1ΔVP22 replication is largely restored in AIM2-deficient mice. Collectively, these findings reveal a mechanism of HSV-1 evasion of the host immune response that enables efficient viral replication in vivo.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: