Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Epizootology and experimental infection of Yokose virus in bats.

  • Shumpei Watanabe‎ et al.
  • Comparative immunology, microbiology and infectious diseases‎
  • 2010‎

To reveal whether bats serve as an amplifying host for Yokose virus (YOKV), we conducted a serological survey and experimentally infected fruit bats with YOKV isolated from microbats in Japan. YOKV belongs to the Entebbe bat virus group of vector unknown group within the genus Flavivirus and family Flaviviridae. To detect antibodies against YOKV, we developed an enzyme-linked immunosorbent assay (ELISA) using biotinylated anti-bat IgG rabbit sera. Serological surveillance was conducted with samples collected in the Philippines and the sera supplied from Malaysia. One of the 36 samples from the Philippines (2.7%) and 5 of the 26 samples from Malaysia (19%) had detectable ELISA antibodies. In the experimental infections, no clinical signs of disease were observed. Moreover, no significant viral genome amplification was detected. These findings revealed that YOKV replicates poorly in the fruit bat, suggesting that fruit bats do not seem to serve as an amplifying host for YOKV.


Akabane virus nonstructural protein NSm regulates viral growth and pathogenicity in a mouse model.

  • Yukari Ishihara‎ et al.
  • The Journal of veterinary medical science‎
  • 2016‎

The biological function of a nonstructural protein, NSm, of Akabane virus (AKAV) is unknown. In this study, we generated a series of NSm deletion mutant viruses by reverse genetics and compared their phenotypes. The mutant in which the NSm coding region was almost completely deleted could not be rescued, suggesting that NSm plays a role in virus replication. We next generated mutant viruses possessing various partial deletions in NSm and identified several regions critical for virus infectivity. All rescued mutant viruses produced smaller plaques and grew inefficiently in cell culture, compared to the wild-type virus. Interestingly, although the pathogenicity of NSm deletion mutant viruses varied in mice depending on their deletion regions and sizes, more than half the mice died following infection with any mutant virus and the dead mice exhibited encephalitis as in wild-type virus-inoculated mice, indicating their neuroinvasiveness. Abundant viral antigens were detected in the brain tissues of dead mice, whereas appreciable antigen was not observed in those of surviving mice, suggesting a correlation between virus growth rate in the brain and neuropathogenicity in mice. We conclude that NSm affects AKAV replication in vitro as well as in vivo and that it may function as a virulence factor.


Feature Extraction of Shoulder Joint's Voluntary Flexion-Extension Movement Based on Electroencephalography Signals for Power Assistance.

  • Hongbo Liang‎ et al.
  • Bioengineering (Basel, Switzerland)‎
  • 2018‎

Brain-Machine Interface (BMI) has been considered as an effective way to help and support both the disabled rehabilitation and healthy individuals' daily lives to use their brain activity information instead of their bodies. In order to reduce costs and control exoskeleton robots better, we aim to estimate the necessary torque information for a subject from his/her electroencephalography (EEG) signals when using an exoskeleton robot to perform the power assistance of the upper limb without using external torque sensors nor electromyography (EMG) sensors. In this paper, we focus on extracting the motion-relevant EEG signals' features of the shoulder joint, which is the most complex joint in the human's body, to construct a power assistance system using wearable upper limb exoskeleton robots with BMI technology. We extract the characteristic EEG signals when the shoulder joint is doing flexion and extension movement freely which are the main motions of the shoulder joint needed to be assisted. Independent component analysis (ICA) is used to extract the source information of neural components, and then the average method is used to extract the characteristic signals that are fundamental to achieve the control. The proposed approach has been experimentally verified. The results show that EEG signals begin to increase at 300⁻400 ms before the motion and then decrease at the beginning of the generation of EMG signals, and the peaks appear at about one second after the motion. At the same time, we also confirmed the relationship between the change of EMG signals and the EEG signals on the time dimension, and these results also provide a theoretical basis for the delay parameter in the linear model which will be used to estimate the necessary torque information in future. Our results suggest that the estimation of torque information based on EEG signals is feasible, and demonstrate the potential of using EEG signals via the control of brain-machine interface to support human activities continuously.


Elevated Membrane Cholesterol Disrupts Lysosomal Degradation to Induce β-Amyloid Accumulation: The Potential Mechanism Underlying Augmentation of β-Amyloid Pathology by Type 2 Diabetes Mellitus.

  • Shingo Takeuchi‎ et al.
  • The American journal of pathology‎
  • 2019‎

The endocytic membrane trafficking system is altered in the brains of early-stage Alzheimer disease (AD) patients, and endocytic disturbance affects the metabolism of β-amyloid (Aβ) protein, a key molecule in AD pathogenesis. It is widely accepted that type 2 diabetes mellitus (T2DM) is one of the strongest risk factors for development of AD. Supporting this link, experimentally induced T2DM enhances AD pathology in various animal models. Spontaneous T2DM also enhances Aβ pathology with severe endocytic pathology, even in nonhuman primate brains. However, it remains unclear how T2DM accelerates Aβ pathology. Herein, we demonstrate that cholesterol metabolism-related protein levels are increased and that membrane cholesterol level is elevated in spontaneous T2DM-affected cynomolgus monkey brains. Moreover, in vitro studies that manipulate cellular cholesterol reveal that elevated membrane cholesterol disrupts lysosomal degradation and enhances chemical-induced endocytic disturbance, resulting in great accumulation of Aβ in Neuro2a cells. These findings suggest that an alteration of cerebral cholesterol metabolism may be responsible for augmentation of Aβ pathology in T2DM-affected brains, which, in turn, may increase the risk for developing AD.


Bat coronaviruses and experimental infection of bats, the Philippines.

  • Shumpei Watanabe‎ et al.
  • Emerging infectious diseases‎
  • 2010‎

Fifty-two bats captured during July 2008 in the Philippines were tested by reverse transcription-PCR to detect bat coronavirus (CoV) RNA. The overall prevalence of virus RNA was 55.8%. We found 2 groups of sequences that belonged to group 1 (genus Alphacoronavirus) and group 2 (genus Betacoronavirus) CoVs. Phylogenetic analysis of the RNA-dependent RNA polymerase gene showed that groups 1 and 2 CoVs were similar to Bat-CoV/China/A515/2005 (95% nt sequence identity) and Bat-CoV/HKU9-1/China/2007 (83% identity), respectively. To propagate group 2 CoVs obtained from a lesser dog-faced fruit bat (Cynopterus brachyotis), we administered intestine samples orally to Leschenault rousette bats (Rousettus leschenaulti) maintained in our laboratory. After virus replication in the bats was confirmed, an additional passage of the virus was made in Leschenault rousette bats, and bat pathogenesis was investigated. Fruit bats infected with virus did not show clinical signs of infection.


Functional analysis of Rousettus aegyptiacus "signal transducer and activator of transcription 1" (STAT1).

  • Hikaru Fujii‎ et al.
  • Developmental and comparative immunology‎
  • 2010‎

Bats are now known as the source of several diseases in humans, but few studies regarding immune responses and factors associated with bats have so far been reported. In this study, we focused on STAT1, one of the critical components in interferon (IFN)-signaling and antiviral activity, which is often targeted by viral proteins to reduce antiviral activity and increase viral replication. We found that Rousettus aegyptiacus STAT1 (bat STAT1) is phosphorylatable and translocates to the nucleus when stimulated with human IFN-alpha (hIFN-alpha). Furthermore, phosphorylation of bat STAT1 and inhibition of nuclear translocation was observed in IFN-stimulated cells infected with the HEP-Flury strain of rabies virus, in the same manner as in other mammals. Additionally, quantitative real-time RT-PCR revealed that bat STAT1 mRNA was highly expressed in the liver, while low in muscle and spleen.


Herpes Simplex Virus 1 VP22 Inhibits AIM2-Dependent Inflammasome Activation to Enable Efficient Viral Replication.

  • Yuhei Maruzuru‎ et al.
  • Cell host & microbe‎
  • 2018‎

The AIM2 inflammasome is activated by DNA, leading to caspase-1 activation and release of pro-inflammatory cytokines interleukin 1β (IL-1β) and IL-18, which are critical mediators in host innate immune responses against various pathogens. Some viruses employ strategies to counteract inflammasome-mediated induction of pro-inflammatory cytokines, but their in vivo relevance is less well understood. Here we show that the herpes simplex virus 1 (HSV-1) tegument protein VP22 inhibits AIM2-dependent inflammasome activation. VP22 interacts with AIM2 and prevents its oligomerization, an initial step in AIM2 inflammasome activation. A mutant virus lacking VP22 (HSV-1ΔVP22) activates AIM2 and induces IL-1β and IL-18 secretion, but these responses are lost in the absence of AIM2. Additionally, HSV-1ΔVP22 infection results in diminished viral yields in vivo, but HSV-1ΔVP22 replication is largely restored in AIM2-deficient mice. Collectively, these findings reveal a mechanism of HSV-1 evasion of the host immune response that enables efficient viral replication in vivo.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: