Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 101 papers

A Direct Effect of Sex Hormones on Epithelial Barrier Function in Inflammatory Bowel Disease Models.

  • Janine van der Giessen‎ et al.
  • Cells‎
  • 2019‎

Pregnancy is often described as an immune-tolerant state, and a disease modulatory role for pregnancy on inflammatory bowel disease (IBD) has been suggested. The direct effect of estrogen and progesterone on the intestinal epithelial barrier is underexplored. We investigated the direct consequences of these pregnancy hormones on barrier cells and their function.


Basal interferon signaling and therapeutic use of interferons in controlling rotavirus infection in human intestinal cells and organoids.

  • Mohamad S Hakim‎ et al.
  • Scientific reports‎
  • 2018‎

Rotavirus (RV) primarily infects enterocytes and results in severe diarrhea, particularly in children. It is known that the host immune responses determine the outcome of viral infections. Following infections, interferons (IFNs) are produced as the first and the main anti-viral cytokines to combat the virus. Here we showed that RV predominantly induced type III IFNs (IFN-λ1), and to a less extent, type I IFNs (IFN-α and IFN-β) in human intestinal cells. However, it did not produce detectable IFN proteins and thus, was not sufficient to inhibit RV replication. In contrast, we revealed the essential roles of the basal IFN signaling in limiting RV replication by silencing STAT1, STAT2 and IRF9 genes. In addition, exogenous IFN treatment demonstrated that RV replication was able to be inhibited by all types of IFNs, both in human intestinal Caco2 cell line and in primary intestinal organoids. In these models, IFNs significantly upregulated a panel of well-known anti-viral IFN-stimulated genes (ISGs). Importantly, inhibition of the JAK-STAT cascade abrogated ISG induction and the anti-RV effects of IFNs. Thus, our study shall contribute to better understanding of the complex RV-host interactions and provide rationale for therapeutic development of IFN-based treatment against RV infection.


Hepatitis E virus infection in acute non-traumatic neuropathy: A large prospective case-control study in China.

  • Yijin Wang‎ et al.
  • EBioMedicine‎
  • 2018‎

Neurological manifestations are potentially associated with hepatitis E virus (HEV) infection in Europe, mainly attributed to genotype (GT) 3 HEV infection. In this study, we determined the frequency and causal relationship of HEV in patients with non-traumatic neurological disorders in China, where GT4 HEV is prevalent. 1117 consecutive patients diagnosed with neurological illnesses in a hospital of eastern China and 1475 healthy controls who took routine examination in the same hospital were tested for HEV by serology and molecular methods. Anti-HEV IgM antibodies were detectable in 6 (0.54%) of the patients and 10 (0.68%) of the healthy controls (P = 0.651). Serum HEV RNA was detected in all of the 16 individuals with positive anti-HEV IgM. The six patients with HEV infection included two viral encephalitis, two posterior circulation ischemia, one peripheral neuropathy and one Guillian-Barré syndrome. They had no symptoms of acute viral hepatitis except two patients of viral encephalitis that showed mildly transaminitis. Additional, 39.51% patients and 35.63% controls without acute HEV infection were positive for anti-HEV IgG (P = 0.144). Anti-HEV IgG positivity was more frequent in male and elderly in both the patients and control groups, but unrelated to the incidence of any non-traumatic neurological illness, hospital stay or treatment outcome, except linking to better outcome of hemorrhagic stroke disease. These data demonstrated that HEV appears not to contribute to acute neurological disorders in China. Nevertheless, we cannot exclude a possible causative role, suggesting that testing HEV in this population, especially in situations of unexplained deregulated liver function would be warranted.


Blocking Wnt Secretion Reduces Growth of Hepatocellular Carcinoma Cell Lines Mostly Independent of β-Catenin Signaling.

  • Wenhui Wang‎ et al.
  • Neoplasia (New York, N.Y.)‎
  • 2016‎

Aberrant activation of Wnt/β-catenin signaling plays a key role in the onset and development of hepatocellular carcinomas (HCC), with about half of them acquiring mutations in either CTNNB1 or AXIN1. However, it remains unclear whether these mutations impose sufficient β-catenin signaling or require upstream Wnt ligand activation for sustaining optimal growth, as previously suggested for colorectal cancers. Using a panel of nine HCC cell lines, we show that siRNA-mediated knockdown of β-catenin impairs growth of all these lines. Blocking Wnt secretion, by either treatment with the IWP12 porcupine inhibitor or knockdown of WLS, reduces growth of most of the lines. Unexpectedly, interfering with Wnt secretion does not clearly affect the level of β-catenin signaling in the majority of lines, suggesting that other mechanisms underlie the growth-suppressive effect. However, IWP12 treatment did not induce autophagy or endoplasmic reticulum (ER) stress, which may have resulted from the accumulation of Wnt ligands within the ER. Similar results were observed for colorectal cancer cell lines used for comparison in various assays. These results suggest that most colorectal and liver cancers with mutations in components of the β-catenin degradation complex do not strongly rely on extracellular Wnt ligand exposure to support optimal growth. In addition, our results also suggest that blocking Wnt secretion may aid in tumor suppression through alternative routes currently unappreciated.


Tumor promotion through the mesenchymal stem cell compartment in human hepatocellular carcinoma.

  • Pratika Y Hernanda‎ et al.
  • Carcinogenesis‎
  • 2013‎

Although the infiltration of mesenchymal stem (stromal) cells (MSCs) into different tumors is widely recognized in animal models, the question whether these MSCs have a positive or negative effect on disease progression remains unanswered. The aim of this study is to investigate whether human hepatocellular carcinoma (HCC) harbors MSCs and whether these MSCs affect tumor growth. We observed that cells capable of differentiation into both adipocyte and osteocyte lineages and expressing MSC markers can be cultured from surgically resected HCC tissues. In situ staining of human HCC tissues with a STRO-1 antibody showed that the tumor and tumor-stromal region are significantly enriched with candidate MSCs compared with adjacent tissue (n = 12, P < 0.01). In mice, coengraftment of a human HCC cell line (Huh7) with MSCs resulted in substantially larger tumors compared with paired engraftment of Huh7 alone (n = 8, P < 0.01). Consistently, coculturing Huh7 with irradiated MSCs significantly increased the number and the size of colonies formed. This enhancement of Huh7 colony formation was also observed by treatment of MSC-conditioned medium (MSC-CM), suggesting that secreted trophic factors contribute to the growth-promoting effects. Genome-wide gene expression array and pathway analysis confirmed the upregulation of cell growth and proliferation-related processes and downregulation of cell death-related pathways by treatment of MSC-CM in Huh7 cells. In conclusion, these results show that MSCs are enriched in human HCC tumor compartment and could exert trophic effects on tumor cells. Thus, targeting of HCC tumor MSCs may represent a new avenue for therapeutic intervention.


FXa-induced intracellular signaling links coagulation to neoangiogenesis: potential implications for fibrosis.

  • Keren Borensztajn‎ et al.
  • Biochimica et biophysica acta‎
  • 2009‎

Fibrosis represents the end-stage of a broad range of disorders affecting organ function. These disorders are often associated with aberrant angiogenesis, but whether vascular abnormalities during fibrosis are characterized by excessive or diminished neo-vascularization remains questionable. Strikingly, activation of the coagulation cascade is frequently observed in association with the progression of fibroproliferative disorders. As we recently showed that coagulation factor (F)Xa induced fibrotic responses in fibroblasts, we hypothesized that FXa might indirectly induce angiogenesis by triggering fibroblasts to secrete proangiogenic factors. In the present study, we show that although FXa induces p42/44 MAP Kinase phosphorylation in endothelial cells, it has no direct effect on endothelial cell proliferation, protein synthesis and tube formation. In contrast, conditioned medium of fibroblasts stimulated with FXa enhanced endothelial cell proliferation, extra cellular matrix synthesis, wound healing and endothelial tube formation. FXa induced VEGF production by fibroblasts and a VEGF neutralizing antibody blocked the indirect effect of FXa on proliferation and realignment of endothelial cells identifying VEGF as a crucial player in angiogenesis during coagulation factor-induced fibrosis. Overall, our results establish a link between the coagulation cascade and angiogenesis during fibrosis.


Fatigue in patients with inflammatory bowel disease is associated with distinct differences in immune parameters.

  • Lauran Vogelaar‎ et al.
  • Clinical and experimental gastroenterology‎
  • 2017‎

Although it is well recognized that fatigue is an important problem in many of the quiescent inflammatory bowel disease (IBD) patients, it is unknown whether the immune status is different in fatigued versus non-fatigued patients. In this study, we contrasted various characteristics of the immune system in fatigued against non-fatigued patients with IBD in clinical remission.


Anti-tumor effects of metformin in animal models of hepatocellular carcinoma: a systematic review and meta-analysis.

  • Juan Li‎ et al.
  • PloS one‎
  • 2015‎

Several studies have reported that metformin can reduce the risk of hepatocellular carcinoma (HCC) in diabetes patients. However, the direct anti-HCC effects of metformin have hardly been studied in patients, but have been extensively investigated in animal models of HCC. We therefore performed a systematic review and meta-analysis of animal studies evaluating the effects of metformin on HCC.


Modulation of Human Peripheral Blood Mononuclear Cell Signaling by Medicinal Cannabinoids.

  • Wesley K Utomo‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2017‎

Medical marijuana is increasingly prescribed as an analgesic for a growing number of indications, amongst which terminal cancer and multiple sclerosis. However, the mechanistic aspects and properties of cannabis remain remarkably poorly characterized. In this study we aimed to investigate the immune-cell modulatory properties of medical cannabis. Healthy volunteers were asked to ingest medical cannabis, and kinome profiling was used to generate comprehensive descriptions of the cannabis challenge on inflammatory signal transduction in the peripheral blood of these volunteers. Results were related to both short term and long term effects in patients experimentally treated with a medical marijuana preparation for suffering from abdominal pain as a result of chronic pancreatitis or other causes. The results reveal an immunosuppressive effect of cannabinoid preparations via deactivation of signaling through the pro-inflammatory p38 MAP kinase and mTOR pathways and a concomitant deactivation of the pro-mitogenic ERK pathway. However, long term cannabis exposure in two patients resulted in reversal of this effect. While these data provide a powerful mechanistic rationale for the clinical use of medical marijuana in inflammatory and oncological disease, caution may be advised with sustained use of such preparations.


Molecular Profile of Barrett's Esophagus and Gastroesophageal Reflux Disease in the Development of Translational Physiological and Pharmacological Studies.

  • Edyta Korbut‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Barrett's esophagus (BE) is a premalignant condition caused by gastroesophageal reflux disease (GERD), where physiological squamous epithelium is replaced by columnar epithelium. Several in vivo and in vitro BE models were developed with questionable translational relevance when implemented separately. Therefore, we aimed to screen Gene Expression Omnibus 2R (GEO2R) databases to establish whether clinical BE molecular profile was comparable with animal and optimized human esophageal squamous cell lines-based in vitro models. The GEO2R tool and selected databases were used to establish human BE molecular profile. BE-specific mRNAs in human esophageal cell lines (Het-1A and EPC2) were determined after one, three and/or six-day treatment with acidified medium (pH 5.0) and/or 50 and 100 µM bile mixture (BM). Wistar rats underwent microsurgical procedures to generate esophagogastroduodenal anastomosis (EGDA) leading to BE. BE-specific genes (keratin (KRT)1, KRT4, KRT5, KRT6A, KRT13, KRT14, KRT15, KRT16, KRT23, KRT24, KRT7, KRT8, KRT18, KRT20, trefoil factor (TFF)1, TFF2, TFF3, villin (VIL)1, mucin (MUC)2, MUC3A/B, MUC5B, MUC6 and MUC13) mRNA expression was assessed by real-time PCR. Pro/anti-inflammatory factors (interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12, IL-13, tumor necrosis factor α, interferon γ, granulocyte-macrophage colony-stimulating factor) serum concentration was assessed by a Luminex assay. Expression profile in vivo reflected about 45% of clinical BE with accompanied inflammatory response. Six-day treatment with 100 µM BM (pH 5.0) altered gene expression in vitro reflecting in 73% human BE profile and making this the most reliable in vitro tool taking into account two tested cell lines. Our optimized and established combined in vitro and in vivo BE models can improve further physiological and pharmacological studies testing pathomechanisms and novel therapeutic targets of this disorder.


Targeting Tyrosine Phosphatases by 3-Bromopyruvate Overcomes Hyperactivation of Platelets from Gastrointestinal Cancer Patients.

  • Alessandra V S Faria‎ et al.
  • Journal of clinical medicine‎
  • 2019‎

Venous thromboembolism (VTE) is one of the most common causes of cancer related mortality. It has been speculated that hypercoagulation in cancer patients is triggered by direct or indirect contact of platelets with tumor cells, however the underlying molecular mechanisms involved are currently unknown. Unraveling these mechanisms may provide potential avenues for preventing platelet-tumor cell aggregation. Here, we investigated the role of protein tyrosine phosphatases in the functionality of platelets in both healthy individuals and patients with gastrointestinal cancer, and determined their use as a target to inhibit platelet hyperactivity. This is the first study to demonstrate that platelet agonists selectively activate low molecular weight protein tyrosine phosphatase (LMWPTP) and PTP1B, resulting in activation of Src, a tyrosine kinase known to contribute to several platelet functions. Furthermore, we demonstrate that these phosphatases are a target for 3-bromopyruvate (3-BP), a lactic acid analog currently investigated for its use in the treatment of various metabolic tumors. Our data indicate that 3-BP reduces Src activity, platelet aggregation, expression of platelet activation makers and platelet-tumor cell interaction. Thus, in addition to its anti-carcinogenic effects, 3-BP may also be effective in preventing platelet-tumor cell aggregationin cancer patients and therefore may reduce cancer mortality by limiting VTE in patients.


Remodeling of the gut microbiome during Ramadan-associated intermittent fasting.

  • Junhong Su‎ et al.
  • The American journal of clinical nutrition‎
  • 2021‎

Intermittent fasting is a popular dietary intervention with perceived relatively easy compliance and is linked to various health benefits, including weight loss and improvement in blood glucose concentrations. The mechanistic explanations underlying the beneficial effects of intermittent fasting remain largely obscure but may involve alterations in the gut microbiota.


Empirical Evaluation of the Use of Computational HLA Binding as an Early Filter to the Mass Spectrometry-Based Epitope Discovery Workflow.

  • Rachid Bouzid‎ et al.
  • Cancers‎
  • 2021‎

Immunopeptidomics is used to identify novel epitopes for (therapeutic) vaccination strategies in cancer and infectious disease. Various false discovery rates (FDRs) are applied in the field when converting liquid chromatography-tandem mass spectrometry (LC-MS/MS) spectra to peptides. Subsequently, large efforts have recently been made to rescue peptides of lower confidence. However, it remains unclear what the overall relation is between the FDR threshold and the percentage of obtained HLA-binders. We here directly evaluated the effect of varying FDR thresholds on the resulting immunopeptidomes of HLA-eluates from human cancer cell lines and primary hepatocyte isolates using HLA-binding algorithms. Additional peptides obtained using less stringent FDR-thresholds, although generally derived from poorer spectra, still contained a high amount of HLA-binders and confirmed recently developed tools that tap into this pool of otherwise ignored peptides. Most of these peptides were identified with improved confidence when cell input was increased, supporting the validity and potential of these identifications. Altogether, our data suggest that increasing the FDR threshold for peptide identification in conjunction with data filtering by HLA-binding prediction, is a valid and highly potent method to more efficient exhaustion of immunopeptidome datasets for epitope discovery and reveals the extent of peptides to be rescued by recently developed algorithms.


The global epidemiology of hepatitis E virus infection: A systematic review and meta-analysis.

  • Pengfei Li‎ et al.
  • Liver international : official journal of the International Association for the Study of the Liver‎
  • 2020‎

Hepatitis E virus (HEV), as an emerging zoonotic pathogen, is a leading cause of acute viral hepatitis worldwide, with a high risk of developing chronic infection in immunocompromised patients. However, the global epidemiology of HEV infection has not been comprehensively assessed. This study aims to map the global prevalence and identify the risk factors of HEV infection by performing a systematic review and meta-analysis.


Investigating Ramadan Like Fasting Effects on the Gut Microbiome in BALB/c Mice.

  • Junhong Su‎ et al.
  • Frontiers in nutrition‎
  • 2022‎

Recently we reported that in healthy volunteer Ramadan-associated intermittent fasting (RAIF) remodels the gut microbiome and resulted in an increase in small chain fatty acid producing bacteria concomitant with improved metabolic parameters. As interpretation of these results is hampered by the possible psychological effects associated with the study, we now aim to investigate RAIF in experimental animals. To this end, 6-week male BALB/c mice were subjected to RAIF (30 days of a 16-h daily fasting; n = 8) or provided with feed ad libitum (n = 6). Fecal samples were collected before and the end of fasting and bacterial 16S rRNA sequencing was performed. We found that RAIF remodeled the composition of gut microbiota in BALB/c mice (p < 0.01) and especially provoked upregulation of butyrate acid-producing Lachnospireceae and Ruminococcaceae (p < 0.01), resembling the effects seen in human volunteers. Hence we conclude that the effects of RAIF on gut microbiome relate to the timing of food intake and are not likely related to psychological factors possibly at play during Ramadan.


Genetic alterations during the neoplastic cascade towards cholangiocarcinoma in primary sclerosing cholangitis.

  • Eline Jca Kamp‎ et al.
  • The Journal of pathology‎
  • 2022‎

Carcinogenesis of primary sclerosing cholangitis (PSC)-associated cholangiocarcinoma (CCA) is largely unexplored. Improved understanding of the molecular events involved may guide development of novel avenues for rational clinical management. We aimed to assess the genetic alterations during progression of the neoplastic cascade from biliary dysplasia towards CCA in PSC. Forty-four resection specimens or biopsies of PSC patients with biliary dysplasia (n = 2) and/or CCA (n = 42) were included. DNA was extracted from sections of formalin-fixed paraffin-embedded tissue blocks with dysplasia (n = 23), CCA (n = 69), and nonneoplastic tissue (n = 28). A custom-made next-generation sequencing (NGS) panel of 28 genes was used for mutation and copy number variation (CNV) detection. In addition, CNVs of CDKN2A, EGFR, MCL1, and MYC were examined by fluorescence in situ hybridization. Alterations in 16 low-grade dysplasia samples included loss of FGFR1 (19%), CDKN2A (13%), and SMAD4 (6%), amplification of FGFR3 (6%), EGFR (6%), and ERBB2 (6%), and mutations in SMAD4 (13%). High-grade dysplasia (n = 7) is characterized by MYC amplification (43%), and mutations in ERBB2 (71%) and TP53 (86%). TP53 mutations are the most common aberrations in PSC-CCA (30%), whereas mutations in KRAS (16%), GNAS (14%), and PIK3CA (9%) are also common. In conclusion, PSC-CCA exhibits a variety of genetic alterations during progression of the neoplastic cascade, with mainly CNVs being present early, whereas mutations in ERBB2, TP53, and KRAS appear later in the development of CCA. These findings are promising for the development of NGS-guided diagnostic strategies in PSC-CCA. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


TIGIT and PD1 Co-blockade Restores ex vivo Functions of Human Tumor-Infiltrating CD8+ T Cells in Hepatocellular Carcinoma.

  • Zhouhong Ge‎ et al.
  • Cellular and molecular gastroenterology and hepatology‎
  • 2021‎

TIGIT is a co-inhibitory receptor, and its suitability as a target for cancer immunotherapy in HCC is unknown. PD1 blockade is clinically effective in about 20% of advanced HCC patients. Here we aim to determine whether co-blockade of TIGIT/PD1 has added value to restore functionality of HCC tumor-infiltrating T cells (TILs).


Immunosuppressants exert differential effects on pan-coronavirus infection and distinct combinatory antiviral activity with molnupiravir and nirmatrelvir.

  • Yining Wang‎ et al.
  • United European gastroenterology journal‎
  • 2023‎

Immunocompromised populations, such as organ transplant recipients and patients with inflammatory bowel disease (IBD) receiving immunosuppressive/immunomodulatory medications, may be more susceptible to coronavirus infections. However, little is known about how immunosuppressants affect coronavirus replication and their combinational effects with antiviral drugs.


Low molecular weight protein tyrosine phosphatase (LMWPTP) upregulation mediates malignant potential in colorectal cancer.

  • Elmer Hoekstra‎ et al.
  • Oncotarget‎
  • 2015‎

Phosphatases have long been regarded as tumor suppressors, however there is emerging evidence for a tumor initiating role for some phosphatases in several forms of cancer. Low Molecular Weight Protein Tyrosine Phosphatase (LMWPTP; acid phosphatase 1 [ACP1]) is an 18 kDa enzyme that influences the phosphorylation of signaling pathway mediators involved in cancer and is thus postulated to be a tumor-promoting enzyme, but neither unequivocal clinical evidence nor convincing mechanistic actions for a role of LMWPTP have been identified. In the present study, we show that LMWPTP expression is not only significantly increased in colorectal cancer (CRC), but also follows a step-wise increase in different levels of dysplasia. Chemical inhibition of LMWPTP significantly reduces CRC growth. Furthermore, downregulation of LMWPTP in CRC leads to a reduced migration ability in both 2D- and 3D-migration assays, and sensitizes tumor cells to the chemotherapeutic agent 5-FU. In conclusion, this study shows that LMWPTP is not only overexpressed in colorectal cancer, but it is correlated with the malignant potential of this cancer, suggesting that this phosphatase may act as a predictive biomaker of CRC stage and represents a rational novel target in the treatment of this disease.


Kinome profiling.

  • Maikel P Peppelenbosch‎
  • Scientifica‎
  • 2012‎

The use of arrays in genomics has led to a fast and reliable way to screen the transcriptome of an organism. It can be automated and analysis tools have become available and hence the technique has become widely used within the past few years. Signal-transduction routes rely mainly on the phosphorylation status of already available proteins; therefore kinases are central players in signal-transduction routes. The array technology can now also be used for the analysis of the kinome. To enable array analysis, consensus peptides for kinases are spot on a solid support. After incubation with cell lysates and in the presence of radioactive ATP, radioactive peptides can be visualized and the kinases that are active in the cells can be determined. The present paper reviews comprehensively the different kinome array platforms available and results obtained hitherto using such platforms. It will appear that this technology does not disappoint its high expectations and is especially powerful because of its species independence. Nevertheless, improvements are still possible and I shall also sketch future possible directions.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: