Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 24 papers

Unsupervised High-Dimensional Analysis Aligns Dendritic Cells across Tissues and Species.

  • Martin Guilliams‎ et al.
  • Immunity‎
  • 2016‎

Dendritic cells (DCs) are professional antigen-presenting cells that hold great therapeutic potential. Multiple DC subsets have been described, and it remains challenging to align them across tissues and species to analyze their function in the absence of macrophage contamination. Here, we provide and validate a universal toolbox for the automated identification of DCs through unsupervised analysis of conventional flow cytometry and mass cytometry data obtained from multiple mouse, macaque, and human tissues. The use of a minimal set of lineage-imprinted markers was sufficient to subdivide DCs into conventional type 1 (cDC1s), conventional type 2 (cDC2s), and plasmacytoid DCs (pDCs) across tissues and species. This way, a large number of additional markers can still be used to further characterize the heterogeneity of DCs across tissues and during inflammation. This framework represents the way forward to a universal, high-throughput, and standardized analysis of DC populations from mutant mice and human patients.


Measurement of fetal fraction in cell-free DNA from maternal plasma using a panel of insertion/deletion polymorphisms.

  • Angela N Barrett‎ et al.
  • PloS one‎
  • 2017‎

Cell-free DNA from maternal plasma can be used for non-invasive prenatal testing for aneuploidies and single gene disorders, and also has applications as a biomarker for monitoring high-risk pregnancies, such as those at risk of pre-eclampsia. On average, the fractional cell-free fetal DNA concentration in plasma is approximately 15%, but can vary from less than 4% to greater than 30%. Although quantification of cell-free fetal DNA is straightforward in the case of a male fetus, there is no universal fetal marker; in a female fetus measurement is more challenging. We have developed a panel of multiplexed insertion/deletion polymorphisms that can measure fetal fraction in all pregnancies in a simple, targeted sequencing reaction.


A comparison of intrauterine hemopoietic cell transplantation and lentiviral gene transfer for the correction of severe β-thalassemia in a HbbTh3/+ murine model.

  • Niraja M Dighe‎ et al.
  • Experimental hematology‎
  • 2018‎

Major hemoglobinopathies place tremendous strain on global resources. Intrauterine hemopoietic cell transplantation (IUHCT) and gene transfer (IUGT) can potentially reduce perinatal morbidities with greater efficacy than postnatal therapy alone. We performed both procedures in the thalassemic HbbTh3/+ mouse. Intraperitoneal delivery of co-isogenic cells at embryonic days13-14 produced dose-dependent chimerism. High-dose adult bone marrow (BM) cells maintained 0.2-3.1% chimerism over ~24 weeks and treated heterozygotes (HET) demonstrated higher chimerism than wild-type (WT) pups (1.6% vs. 0.7%). Fetalliver (FL) cells produced higher chimerism than BM when transplanted at thesame doses, maintaining 1.8-2.4% chimerism over ~32 weeks. We boosted transplanted mice postnatally with BM cells after busulfan conditioning. Engraftment was maintained at >1% only in chimeras. IUHCT-treated nonchimeras and non-IUHCT mice showed microchimerism or no chimerism. Improved engraftment was observed with a higher initial chimerism, in HET mice and with the addition of fludarabine. Chimeric HET mice expressed 2.2-15.1% engraftment with eventual decline at 24 weeks (vs. <1% in nonchimeras) and demonstrated improved hematological indices and smaller spleens compared with untreated HETmice. Intravenous delivery of GLOBE lentiviral-vector expressing human β-globin (HBB) resulted in a vector concentration of 0.001-0.6 copies/cell. Most hematological indices were higher in treated than untreated HET mice, including hemoglobin and mean corpuscular volume, but were still lower than in WT. Therefore, direct IUGT and IUHCT strategies can be used to achieve hematological improvement but require further dose optimization. IUHCT will be useful combined with postnatal transplantation to further enhance engraftment.


CSIOVDB: a microarray gene expression database of epithelial ovarian cancer subtype.

  • Tuan Zea Tan‎ et al.
  • Oncotarget‎
  • 2015‎

Databases pertaining to various diseases provide valuable resources on particular genes of interest but lack the molecular subtype and epithelial-mesenchymal transition status. CSIOVDB is a transcriptomic microarray database of 3,431 human ovarian cancers, including carcinoma of the ovary, fallopian tube, and peritoneum, and metastasis to the ovary. The database also comprises stroma and ovarian surface epithelium from normal ovary tissue, as well as over 400 early-stage ovarian cancers. This unique database presents the molecular subtype and epithelial-mesenchymal transition status for each ovarian cancer sample, with major ovarian cancer histologies (clear cell, endometrioid, mucinous, low-grade serous, serous) represented. Clinico-pathological parameters available include tumor grade, surgical debulking status, clinical response and age. The database has 1,868 and 1,516 samples with information pertaining to overall and disease-free survival rates, respectively. The database also provides integration with the copy number, DNA methylation and mutation data from TCGA. CSIOVDB seeks to provide a resource for biomarker and therapeutic target exploration for ovarian cancer research.


Long-term reproducible expression in human fetal liver hematopoietic stem cells with a UCOE-based lentiviral vector.

  • Niraja Dighe‎ et al.
  • PloS one‎
  • 2014‎

Hematopoietic Stem Cell (HSC) targeted gene transfer is an attractive treatment option for a number of hematopoietic disorders caused by single gene defects. However, extensive methylation of promoter sequences results in silencing of therapeutic gene expression. The choice of an appropriate promoter is therefore crucial for reproducible, stable and long-term transgene expression in clinical gene therapy. Recent studies suggest efficient and stable expression of transgenes from the ubiquitous chromatin opening element (UCOE) derived from the human HNRPA2B1-CBX3 locus can be achieved in murine HSC. Here, we compared the use of HNRPA2B1-CBX3 UCOE (A2UCOE)-mediated transgene regulation to two other frequently used promoters namely EF1α and PGK in human fetal liver-derived HSC (hflHSC). Efficient transduction of hflHSC with a lentiviral vector containing an HNRPA2B1-CBX3 UCOE-eGFP (A2UCOE-eGFP) cassette was achieved at higher levels than that obtained with umbilical cord blood derived HSC (3.1x; p<0.001). While hflHSC were readily transduced with all three test vectors (A2UCOE-eGFP, PGK-eGFP and EF1α-eGFP), only the A2-UCOE construct demonstrated sustained transgene expression in vitro over 24 days (p<0.001). In contrast, within 10 days in culture a rapid decline in transgene expression in both PGK-eGFP and EF1α-eGFP transduced hflHSC was seen. Subsequently, injection of transduced cells into immunodeficient mice (NOD/SCID/Il2rg-/-) demonstrated sustained eGFP expression for the A2UCOE-eGFP group up to 10 months post transplantation whereas PGK-eGFP and EF1α-eGFP transduced hflHSC showed a 5.1 and 22.2 fold reduction respectively over the same time period. We conclude that the A2UCOE allows a more efficient and stable expression in hflHSC to be achieved than either the PGK or EF1α promoters and at lower vector copy number per cell.


Microbial exposure during early human development primes fetal immune cells.

  • Archita Mishra‎ et al.
  • Cell‎
  • 2021‎

The human fetal immune system begins to develop early during gestation; however, factors responsible for fetal immune-priming remain elusive. We explored potential exposure to microbial agents in utero and their contribution toward activation of memory T cells in fetal tissues. We profiled microbes across fetal organs using 16S rRNA gene sequencing and detected low but consistent microbial signal in fetal gut, skin, placenta, and lungs in the 2nd trimester of gestation. We identified several live bacterial strains including Staphylococcus and Lactobacillus in fetal tissues, which induced in vitro activation of memory T cells in fetal mesenteric lymph node, supporting the role of microbial exposure in fetal immune-priming. Finally, using SEM and RNA-ISH, we visualized discrete localization of bacteria-like structures and eubacterial-RNA within 14th weeks fetal gut lumen. These findings indicate selective presence of live microbes in fetal organs during the 2nd trimester of gestation and have broader implications toward the establishment of immune competency and priming before birth.


Supplementation of Omega 3 during Pregnancy and the Risk of Preterm Birth: A Systematic Review and Meta-Analysis.

  • Ramón Serra‎ et al.
  • Nutrients‎
  • 2021‎

Preterm birth (PTB) is a major cause of neonatal death and long-term consequences for the newborn. This review aims to update the evidence about the potential benefit of pharmacological supplementation with omega 3 fatty acids during pregnancy on the incidence of PTB. The Medline, Embase, Cochrane Library and Central databases were searched until 28 June 2020 for RCTs in which omega 3 supplementation was used versus placebo to reduce PTB risk. Data from 37 trials were analyzed. We found an 11% reduction in PTB risk (RR(risk ratios), 0.89; 95% CI (confidence intervals), 0.82 to 0.97) in trials using omega 3 supplements versus placebo. Regarding early PTB (ePTB), there was a 27% reduction in the risk of ePTB (RR, 0.73; 95% CI, 0.58 to 0.92). However, after sensitivity analyses, there were no significant differences in PTB and ePTB risk (PTB RR, 0.92; 95% CI, 0.83 to 1.01, ePTB RR, 0.82; 95% CI, 0.61 to 1.09). We conclude that omega 3 supplementation during pregnancy does not reduce the risk of PTB and ePTB. More studies are required to determine the effect of omega 3 supplementations during pregnancy and the risk of detrimental fetal outcomes.


Integration-free induced pluripotent stem cells from three endangered Southeast Asian non-human primate species.

  • Qiuye Bao‎ et al.
  • Scientific reports‎
  • 2024‎

Advanced molecular and cellular technologies provide promising tools for wildlife and biodiversity conservation. Induced pluripotent stem cell (iPSC) technology offers an easily accessible and infinite source of pluripotent stem cells, and have been derived from many threatened wildlife species. This paper describes the first successful integration-free reprogramming of adult somatic cells to iPSCs, and their differentiation, from three endangered Southeast Asian primates: the Celebes Crested Macaque (Macaca nigra), the Lar Gibbon (Hylobates lar), and the Siamang (Symphalangus syndactylus). iPSCs were also generated from the Proboscis Monkey (Nasalis larvatus). Differences in mechanisms could elicit new discoveries regarding primate evolution and development. iPSCs from endangered species provides a safety net in conservation efforts and allows for sustainable sampling for research and conservation, all while providing a platform for the development of further in vitro models of disease.


Regionally-specified second trimester fetal neural stem cells reveals differential neurogenic programming.

  • Yiping Fan‎ et al.
  • PloS one‎
  • 2014‎

Neural stem/progenitor cells (NSC) have the potential for treatment of a wide range of neurological diseases such as Parkinson Disease and multiple sclerosis. Currently, NSC have been isolated only from hippocampus and subventricular zone (SVZ) of the adult brain. It is not known whether NSC can be found in all parts of the developing mid-trimester central nervous system (CNS) when the brain undergoes massive transformation and growth. Multipotent NSC from the mid-trimester cerebra, thalamus, SVZ, hippocampus, thalamus, cerebellum, brain stem and spinal cord can be derived and propagated as clonal neurospheres with increasing frequencies with increasing gestations. These NSC can undergo multi-lineage differentiation both in vitro and in vivo, and engraft in a developmental murine model. Regionally-derived NSC are phenotypically distinct, with hippocampal NSC having a significantly higher neurogenic potential (53.6%) over other sources (range of 0%-27.5%, p<0.004). Whole genome expression analysis showed differential gene expression between these regionally-derived NSC, which involved the Notch, epidermal growth factor as well as interleukin pathways. We have shown the presence of phenotypically-distinct regionally-derived NSC from the mid-trimester CNS, which may reflect the ontological differences occurring within the CNS. Aside from informing on the role of such cells during fetal growth, they may be useful for different cellular therapy applications.


Quantitative proteomics analysis of maternal plasma in Down syndrome pregnancies using isobaric tagging reagent (iTRAQ).

  • Varaprasad Kolla‎ et al.
  • Journal of biomedicine & biotechnology‎
  • 2010‎

Currently no specific biomarkers exist for the screening of pregnancies at risk for Down syndrome (DS). Since a quantitative proteomic approach with isobaric labelling (iTRAQ) has recently been suggested to be highly suitable for the discovery of novel plasma biomarkers, we have now used this method to examine for potential quantitative changes in the plasma proteome of the pregnancies bearing DS fetuses in comparison to normal healthy babies. In our study, we used plasma from six women with DS pregnancies and six with uncomplicated pregnancies care were taken to match cases and controls for gestational and maternal age, as these could be a confounder. In our quantitative proteomics analysis we were able to detect 178 proteins using iTRAQ labelling in conjunction with 4800 MALDI TOF/TOF. Amongst these we observed changes in betaHCG, a known screening marker for DS, indicating that our assay was functional. We found a number of elevated proteins Ig lambda chain C region, serum amyloid P-component, amyloid beta A4, and under expressed proteins like gamma-actin and titin in DS pregnancies. These proteins are also found in the sera of patients with Alzheimer disease, which share similar pathologies of DS. Our study therefore indicates that the iTRAQ labelling approach may be indeed useful for the detection of novel biomarkers.


A murine model demonstrating reversal of structural and functional correlates of cirrhosis with progenitor cell transplantation.

  • Mark D Muthiah‎ et al.
  • Scientific reports‎
  • 2019‎

Development of cell transplantation for treating liver cirrhosis hinges critically on the availability of animal models for studying human stem cell transplantation. We report an immune-permissive murine model of liver cirrhosis with full clinical correlates of decompensated liver disease, and allows testing efficacy of stem cell transplantation. Liver cirrhosis was induced in Nod-scid gamma(NSG) mice with oral thioacetamide(TA) and compared to controls over 12 months. 4 month TA treated cirrhotic mice were then transplanted intrasplenically with 2million human fetal liver progenitor cells(HFH) and compared with cirrhotic controls 2 months after transplantation. NSG-TA mice developed shrunken and nodular livers with histological evidence of fibrosis as compared to controls. This was associated with evidence of worsening decompensated liver disease, with jaundice, hypoalbuminemia, coagulopathy, and encephalopathy in NSG-TA mice. Transplantation of HFH resulted in improvement in both fibrosis and markers of decompensated liver disease. We have demonstrated that NSG-TA mice can recapitulate the full clinical picture of structural and functional cirrhosis, both of which can be improved by transplantation of human fetal liver cells. This model serves as a valuable tool for validation of in vivo liver stem cell transplantation and opens up opportunities for studying the mechanism how stem cells reverse fibrosis.


Coronavirus disease 2019 (COVID-19) pandemic and pregnancy.

  • Pradip Dashraath‎ et al.
  • American journal of obstetrics and gynecology‎
  • 2020‎

The current coronavirus disease 2019 (COVID-19) pneumonia pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is spreading globally at an accelerated rate, with a basic reproduction number (R0) of 2-2.5, indicating that 2-3 persons will be infected from an index patient. A serious public health emergency, it is particularly deadly in vulnerable populations and communities in which healthcare providers are insufficiently prepared to manage the infection. As of March 16, 2020, there are more than 180,000 confirmed cases of COVID-19 worldwide, with more than 7000 related deaths. The SARS-CoV-2 virus has been isolated from asymptomatic individuals, and affected patients continue to be infectious 2 weeks after cessation of symptoms. The substantial morbidity and socioeconomic impact have necessitated drastic measures across all continents, including nationwide lockdowns and border closures. Pregnant women and their fetuses represent a high-risk population during infectious disease outbreaks. To date, the outcomes of 55 pregnant women infected with COVID-19 and 46 neonates have been reported in the literature, with no definite evidence of vertical transmission. Physiological and mechanical changes in pregnancy increase susceptibility to infections in general, particularly when the cardiorespiratory system is affected, and encourage rapid progression to respiratory failure in the gravida. Furthermore, the pregnancy bias toward T-helper 2 (Th2) system dominance, which protects the fetus, leaves the mother vulnerable to viral infections, which are more effectively contained by the Th1 system. These unique challenges mandate an integrated approach to pregnancies affected by SARS-CoV-2. Here we present a review of COVID-19 in pregnancy, bringing together the various factors integral to the understanding of pathophysiology and susceptibility, diagnostic challenges with real-time reverse transcription polymerase chain reaction (RT-PCR) assays, therapeutic controversies, intrauterine transmission, and maternal-fetal complications. We discuss the latest options in antiviral therapy and vaccine development, including the novel use of chloroquine in the management of COVID-19. Fetal surveillance, in view of the predisposition to growth restriction and special considerations during labor and delivery, is addressed. In addition, we focus on keeping frontline obstetric care providers safe while continuing to provide essential services. Our clinical service model is built around the principles of workplace segregation, responsible social distancing, containment of cross-infection to healthcare providers, judicious use of personal protective equipment, and telemedicine. Our aim is to share a framework that can be adopted by tertiary maternity units managing pregnant women in the flux of a pandemic while maintaining the safety of the patient and healthcare provider at its core.


Fission Yeast Methylenetetrahydrofolate Reductase Ensures Mitotic and Meiotic Chromosome Segregation Fidelity.

  • Kim Kiat Lim‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Methylenetetrahydrofolate reductase (MTHFR) is a key enzyme in the folate metabolic pathway, and its loss of function through polymorphisms is often associated with human conditions, including cancer, congenital heart disease, and Down syndrome. MTHFR is also required in the maintenance of heterochromatin, a crucial determinant of genomic stability and precise chromosomal segregation. Here, we characterize the function of a fission yeast gene met11+, which encodes a protein that is highly homologous to the mammalian MTHFR. We show that, although met11+ is not essential for viability, its disruption increases chromosome missegregation and destabilizes constitutive heterochromatic regions at pericentromeric, sub-telomeric and ribosomal DNA (rDNA) loci. Transcriptional silencing at these sites were disrupted, which is accompanied by the reduction in enrichment of histone H3 lysine 9 dimethylation (H3K9me2) and binding of the heterochromatin protein 1 (HP1)-like Swi6. The met11 null mutant also dominantly disrupts meiotic fidelity, as displayed by reduced sporulation efficiency and defects in proper partitioning of the genetic material during meiosis. Interestingly, the faithful execution of these meiotic processes is synergistically ensured by cooperation among Met11, Rec8, a meiosis-specific cohesin protein, and the shugoshin protein Sgo1, which protects Rec8 from untimely cleavage. Overall, our results suggest a key role for Met11 in maintaining pericentromeric heterochromatin for precise genetic inheritance during mitosis and meiosis.


Inhibition of growth of Asian keloid cells with human umbilical cord Wharton's jelly stem cell-conditioned medium.

  • Subramanian Arjunan‎ et al.
  • Stem cell research & therapy‎
  • 2020‎

Keloid formation occurs in Caucasian, African, and Asian populations and is a severe psychosocial burden on patients. There is no permanent treatment for this problem as its pathogenesis is not properly understood. Furthermore, differences in keloid behavior between ethnic groups are not known. It has been hypothesized that keloids behave like benign tumors because of their uncontrolled growth. The present study evaluated the tumoricidal properties of human Wharton's jelly stem cell-conditioned medium (hWJSC-CM) on fresh Asian keloid cells (AKCs).


Functional genomics identifies five distinct molecular subtypes with clinical relevance and pathways for growth control in epithelial ovarian cancer.

  • Tuan Zea Tan‎ et al.
  • EMBO molecular medicine‎
  • 2013‎

Epithelial ovarian cancer (EOC) is hallmarked by a high degree of heterogeneity. To address this heterogeneity, a classification scheme was developed based on gene expression patterns of 1538 tumours. Five, biologically distinct subgroups - Epi-A, Epi-B, Mes, Stem-A and Stem-B - exhibited significantly distinct clinicopathological characteristics, deregulated pathways and patient prognoses, and were validated using independent datasets. To identify subtype-specific molecular targets, ovarian cancer cell lines representing these molecular subtypes were screened against a genome-wide shRNA library. Focusing on the poor-prognosis Stem-A subtype, we found that two genes involved in tubulin processing, TUBGCP4 and NAT10, were essential for cell growth, an observation supported by a pathway analysis that also predicted involvement of microtubule-related processes. Furthermore, we observed that Stem-A cell lines were indeed more sensitive to inhibitors of tubulin polymerization, vincristine and vinorelbine, than the other subtypes. This subtyping offers new insights into the development of novel diagnostic and personalized treatment for EOC patients.


Pre-differentiation of human neural stem cells into GABAergic neurons prior to transplant results in greater repopulation of the damaged brain and accelerates functional recovery after transient ischemic stroke.

  • Hima C S Abeysinghe‎ et al.
  • Stem cell research & therapy‎
  • 2015‎

Despite attempts to prevent brain injury during the hyperacute phase of stroke, most sufferers end up with significant neuronal loss and functional deficits. The use of cell-based therapies to recover the injured brain offers new hope. In the current study, we employed human neural stem cells (hNSCs) isolated from subventricular zone (SVZ), and directed their differentiation into GABAergic neurons followed by transplantation to ischemic brain.


Therapeutic expression of human clotting factors IX and X following adeno-associated viral vector-mediated intrauterine gene transfer in early-gestation fetal macaques.

  • Jerry K Y Chan‎ et al.
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology‎
  • 2019‎

Adeno-associated viral vectors (AAVs) achieve stable therapeutic expression without long-term toxicity in adults with hemophilia. To avert irreversible complications in congenital disorders producing early pathogenesis, safety and efficacy of AAV-intrauterine gene transfer (IUGT) requires assessment. We therefore performed IUGT of AAV5 or -8 with liver-specific promoter-1 encoding either human coagulation factors IX (hFIX) or X (hFX) into Macaca fascicularis fetuses at ∼0.4 gestation. The initial cohort received 1 × 1012 vector genomes (vgs) of AAV5-hFIX ( n = 5; 0.45 × 1013 vg/kg birth weight), resulting in ∼3.0% hFIX at birth and 0.6-6.8% over 19-51 mo. The next cohort received 0.2-1 × 1013 vg boluses. AAV5-hFX animals ( n = 3; 3.57 × 1013 vg/kg) expressed <1% at birth and 9.4-27.9% up to 42 mo. AAV8-hFIX recipients ( n = 3; 2.56 × 1013 vg/kg) established 4.2-41.3% expression perinatally and 9.8-25.3% over 46 mo. Expression with AAV8-hFX ( n = 6, 3.12 × 1013 vg/kg) increased from <1% perinatally to 9.8-13.4% >35 mo. Low expressers (<1%, n = 3) were postnatally challenged with 2 × 1011 vg/kg AAV5 resulting in 2.4-13.2% expression and demonstrating acquired tolerance. Linear amplification-mediated-PCR analysis demonstrated random integration of 57-88% of AAV sequences retrieved from hepatocytes with no events occurring in or near oncogenesis-associated genes. Thus, early-IUGT in macaques produces sustained curative expression related significantly to integrated AAV in the absence of clinical toxicity, supporting its therapeutic potential for early-onset monogenic disorders.-Chan, J. K. Y., Gil-Farina I., Johana, N., Rosales, C., Tan, Y. W., Ceiler, J., Mcintosh, J., Ogden, B., Waddington, S. N., Schmidt, M., Biswas, A., Choolani, M., Nathwani, A. C., Mattar, C. N. Z. Therapeutic expression of human clotting factors IX and X following adeno-associated viral vector-mediated intrauterine gene transfer in early-gestation fetal macaques.


SERS-based detection of haptoglobin in ovarian cyst fluid as a point-of-care diagnostic assay for epithelial ovarian cancer.

  • Jayakumar Perumal‎ et al.
  • Cancer management and research‎
  • 2019‎

To evaluate haptoglobin (Hp) in ovarian cyst fluid as a diagnostic biomarker for epithelial ovarian cancers (EOCs) using surface-enhanced Raman spectroscopy (SERS)-based in vitro diagnostic assay for use in an intraoperative setting.


Spotlight on the Granules (Grainyhead-Like Proteins) - From an Evolutionary Conserved Controller of Epithelial Trait to Pioneering the Chromatin Landscape.

  • Vignesh Sundararajan‎ et al.
  • Frontiers in molecular biosciences‎
  • 2020‎

Among the transcription factors that are conserved across phylogeny, the grainyhead family holds vital roles in driving the epithelial cell fate. In Drosophila, the function of grainyhead (grh) gene is essential during developmental processes such as epithelial differentiation, tracheal tube formation, maintenance of wing and hair polarity, and epidermal barrier wound repair. Three main mammalian orthologs of grh: Grainyhead-like 1-3 (GRHL1, GRHL2, and GRHL3) are highly conserved in terms of their gene structures and functions. GRHL proteins are essentially associated with the development and maintenance of the epithelial phenotype across diverse physiological conditions such as epidermal differentiation and craniofacial development as well as pathological functions including hearing impairment and neural tube defects. More importantly, through direct chromatin binding and induction of epigenetic alterations, GRHL factors function as potent suppressors of oncogenic cellular dedifferentiation program - epithelial-mesenchymal transition and its associated tumor-promoting phenotypes such as tumor cell migration and invasion. On the contrary, GRHL factors also induce pro-tumorigenic effects such as increased migration and anchorage-independent growth in certain tumor types. Furthermore, investigations focusing on the epithelial-specific activation of grh and GRHL factors have revealed that these factors potentially act as a pioneer factor in establishing a cell-type/cell-state specific accessible chromatin landscape that is exclusive for epithelial gene transcription. In this review, we highlight the essential roles of grh and GRHL factors during embryogenesis and pathogenesis, with a special focus on its emerging pioneering function.


Maternal dendritic cells influence fetal allograft response following murine in-utero hematopoietic stem cell transplantation.

  • Karthikeyan Kandasamy‎ et al.
  • Stem cell research & therapy‎
  • 2023‎

Intrauterine hematopoietic stem cell transplantation (IUT), potentially curative in congenital haematological disease, is often inhibited by deleterious immune responses to donor cells resulting in subtherapeutic donor cell chimerism (DCC). Microchimerism of maternal immune cells (MMc) trafficked into transplanted recipients across the placenta may directly influence donor-specific alloresponsiveness, limiting DCC. We hypothesized that dendritic cells (DC) among trafficked MMc influence the development of tolerogenic or immunogenic responses towards donor cells, and investigated if maternal DC-depletion reduced recipient alloresponsiveness and enhanced DCC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: