Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 36 papers

Prolonged Induction of miR-212/132 and REST Expression in Rat Striatum Following Cocaine Self-Administration.

  • Anna Sadakierska-Chudy‎ et al.
  • Molecular neurobiology‎
  • 2017‎

Chronic exposure to cocaine in vivo induces long-term synaptic plasticity associated with the brain's circuitry that underlies development of repetitive and automatic behaviors called habits. In fact, prolonged drug consumption results in aberrant expression of protein-coding genes and small regulatory RNAs, including miRNAs that are involved in synaptic plasticity and neuroadaptations. However, the mechanisms mediating cocaine use disorder are still not fully understood. The present study is designed to examine the expression of miR-124, miR-132, miR-134, and miR-212, as well as the levels of the Ago2, Pum2, and REST mRNAs and proteins implicated in their regulation. We applied rat cocaine self-administration (SA) and extinction training procedures with a yoked triad to assess the changes in the levels of four miRNAs and three protein-coding genes and corresponding proteins in the dorsal striatum. We demonstrated that elevated expression of mature miR-212 and miR-132 is long-lasting and persists in the drug-free period (till 10-day abstinence). Moreover, mRNA and protein of REST, a regulator of neuronal transcription, was raised selectively in cocaine self-administering rats and Ago2 transcript decreased after cocaine treatment. Unexpectedly, the expression level of Ago2 and Pum2 proteins changed only in the active cocaine-receiving animals. These results point out the important aspects of long-lasting alterations in microRNAs, genes, and protein expressions involved in the control of synaptic plasticity associated with reward and motivation learning related to cocaine addiction.


Ceftriaxone- and N-acetylcysteine-induced brain tolerance to ischemia: Influence on glutamate levels in focal cerebral ischemia.

  • Weronika Krzyżanowska‎ et al.
  • PloS one‎
  • 2017‎

One of the major players in the pathophysiology of cerebral ischemia is disrupted homeostasis of glutamatergic neurotransmission, resulting in elevated extracellular glutamate (Glu) concentrations and excitotoxicity-related cell death. In the brain, Glu concentrations are regulated by Glu transporters, including Glu transporter-1 (GLT-1) and cystine/Glu antiporter (system xc-). Modulation of these transporters by administration of ceftriaxone (CEF, 200 mg/kg, i.p.) or N-acetylcysteine (NAC, 150 mg/kg, i.p.) for 5 days before focal cerebral ischemia may induce brain tolerance to ischemia by significantly limiting stroke-related damage and normalizing Glu concentrations. In the present study, focal cerebral ischemia was induced by 90-minute middle cerebral artery occlusion (MCAO). We compared the effects of CEF and NAC pretreatment on Glu concentrations in extracellular fluid and cellular-specific expression of GLT-1 and xCT with the effects of two reference preconditioning methods, namely, ischemic preconditioning and chemical preconditioning in rats. Both CEF and NAC significantly reduced Glu levels in the frontal cortex and hippocampus during focal cerebral ischemia, and this decrease was comparable with the Glu level achieved with the reference preconditioning strategies. The results of immunofluorescence staining of GLT-1 and xCT on astrocytes, neurons and microglia accounted for the observed changes in extracellular Glu levels to a certain extent. Briefly, after MCAO, the expression of GLT-1 on astrocytes decreased, but pretreatment with CEF seemed to prevent this downregulation. In addition, every intervention used in this study seemed to reduce xCT expression on astrocytes and neurons. The results of this study indicate that modulation of Glu transporter expression may restore Glu homeostasis. Moreover, our results suggest that CEF and NAC may induce brain tolerance to ischemia by influencing GLT-1 and system xc- expression levels. These transporters are presumably good targets for the development of novel therapies for brain ischemia.


Changes in the Brain Endocannabinoid System in Rat Models of Depression.

  • Irena Smaga‎ et al.
  • Neurotoxicity research‎
  • 2017‎

A growing body of evidence implicates the endocannabinoid (eCB) system in the pathophysiology of depression. The aim of this study was to investigate the influence of changes in the eCB system, such as levels of neuromodulators, eCB synthesizing and degrading enzymes, and cannabinoid (CB) receptors, in different brain structures in animal models of depression using behavioral and biochemical analyses. Both models used, i.e., bulbectomized (OBX) and Wistar Kyoto (WKY) rats, were characterized at the behavioral level by increased immobility time. In the OBX rats, anandamide (AEA) levels were decreased in the prefrontal cortex, hippocampus, and striatum and increased in the nucleus accumbens, while 2-arachidonoylglycerol (2-AG) levels were increased in the prefrontal cortex and decreased in the nucleus accumbens with parallel changes in the expression of eCB metabolizing enzymes in several structures. It was also observed that CB1 receptor expression decreased in the hippocampus, dorsal striatum, and nucleus accumbens, and CB2 receptor expression decreased in the prefrontal cortex and hippocampus. In WKY rats, the levels of eCBs were reduced in the prefrontal cortex (2-AG) and dorsal striatum (AEA) and increased in the prefrontal cortex (AEA) with different changes in the expression of eCB metabolizing enzymes, while the CB1 receptor density was increased in several brain regions. These findings suggest that dysregulation in the eCB system is implicated in the pathogenesis of depression, although neurochemical changes were linked to the particular brain structure and the factor inducing depression (surgical removal of the olfactory bulbs vs. genetic modulation).


Oxidative Stress in Neurodegenerative Diseases.

  • Ewa Niedzielska‎ et al.
  • Molecular neurobiology‎
  • 2016‎

The pathophysiologies of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD), are far from being fully explained. Oxidative stress (OS) has been proposed as one factor that plays a potential role in the pathogenesis of neurodegenerative disorders. Clinical and preclinical studies indicate that neurodegenerative diseases are characterized by higher levels of OS biomarkers and by lower levels of antioxidant defense biomarkers in the brain and peripheral tissues. In this article, we review the current knowledge regarding the involvement of OS in neurodegenerative diseases, based on clinical trials and animal studies. In addition, we analyze the effects of the drug-induced modulation of oxidative balance, and we explore pharmacotherapeutic strategies for OS reduction.


Maternal Diet Influences the Reinstatement of Cocaine-Seeking Behavior and the Expression of Melanocortin-4 Receptors in Female Offspring of Rats.

  • Dawid Gawliński‎ et al.
  • Nutrients‎
  • 2020‎

Recent studies have emphasized the role of the maternal diet in the development of mental disorders in offspring. Substance use disorder is a major global health and economic burden. Therefore, the search for predisposing factors for the development of this disease can contribute to reducing the health and social damage associated with addiction. In this study, we focused on the impact of the maternal diet on changes in melanocortin-4 (MC-4) receptors as well as on behavioral changes related to cocaine addiction. Rat dams consumed a high-fat diet (HFD), high-sugar diet (HSD, rich in sucrose), or mixed diet (MD) during pregnancy and lactation. Using an intravenous cocaine self-administration model, the susceptibility of female offspring to cocaine reward and cocaine-seeking propensities was evaluated. In addition, the level of MC-4 receptors in the rat brain structures related to cocaine reward and relapse was assessed. Modified maternal diets did not affect cocaine self-administration in offspring. However, the maternal HSD enhanced cocaine-seeking behavior in female offspring. In addition, we observed that the maternal HSD and MD led to increased expression of MC-4 receptors in the nucleus accumbens, while increased MC-4 receptor levels in the dorsal striatum were observed after exposure to the maternal HSD and HFD. Taken together, it can be concluded that a maternal HSD is an important factor that triggers cocaine-seeking behavior in female offspring and the expression of MC-4 receptors.


Cocaine Administration and Its Abstinence Conditions Modulate Neuroglia.

  • Kinga Gawlińska‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Cocaine induces neuronal changes as well as non-neuronal (astrocytes, microglia, oligodendroglia) mechanisms, but these changes can also be modulated by various types of drug abstinence. Due to the very complex and still incompletely understood nature of cocaine use disorder, understanding of the mechanisms involved in addictive behavior is necessary to further search for effective pharmacotherapy of this disease. The aim of this study was to investigate changes at the gene and protein levels associated with glial cell activity after cocaine exposure, as well as during early cocaine abstinence (3 days) with extinction training or in home cage isolation. Cocaine self-administration significantly decreased myelin regulatory factor (MYRF) and cyclic nucleotide phosphodiesterase (CNP) expression in the hippocampus as well as pleckstrin (PLEK) and T-lymphocyte activation antigen (CD86) in the rat striatum. Depending on cocaine abstinence conditions, microglial PLEK expression was increased through extinction training but did not change in the home cage isolation. In addition, downregulation of gene expression associated with oligodendrocytes (CNP, MYRF) and microglia regulator of G protein signaling 1 (RGS1) was observed in the hippocampus, regardless of the type of drug abstinence, while downregulation of myelin and lymphocyte protein (MAL) expression was found only in rats exposed to abstinence in the home cage. Taken together, the presented results strongly suggest that cocaine abstinence evokes significant changes in gene expression associated with the proper functioning of glial cells, suggesting their significant involvement in adaptive changes in the brain associated with cocaine exposure. Interestingly, drug abstinence conditions are important factors influencing observed changes at the transcript levels of selected genes, which may be of clinical interest.


Maternal feeding patterns affect the offspring's brain: focus on serotonin 5-HT2C and 5-HT2A receptors.

  • Kinga Gawlińska‎ et al.
  • Pharmacological reports : PR‎
  • 2021‎

Recent studies have shown a relationship between the composition of the maternal diet and acquiring a risk of mental illnesses through changes in the offspring's brain. This study assessed the role of a modified maternal diet on the levels of serotonin (5-HT)2C and 5-HT2A receptors in the offspring brain.


Novel GPR18 Ligands in Rodent Pharmacological Tests: Effects on Mood, Pain, and Eating Disorders.

  • Małgorzata Frankowska‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

The lack of selective pharmacological tools has limited the full unraveling of G protein-coupled receptor 18 (GPR18) functions. The present study was aimed at discovering the activities of three novel preferential or selective GPR18 ligands, one agonist (PSB-KK-1415) and two antagonists (PSB-CB-5 and PSB-CB-27). We investigated these ligands in several screening tests, considering the relationship between GPR18 and the cannabinoid (CB) receptor system, and the control of endoCB signaling over emotions, food intake, pain sensation, and thermoregulation. We also assessed whether the novel compounds could modulate the subjective effects evoked by Δ9-tetrahydrocannabinol (THC). Male mice or rats were pretreated with the GPR18 ligands, and locomotor activity, depression- and anxiety-like symptoms, pain threshold, core temperature, food intake, and THC-vehicle discrimination were measured. Our screening analyses indicated that GPR18 activation partly results in effects that are similar to those of CB receptor activation, considering the impact on emotional behavior, food intake, and pain activity. Thus, the orphan GPR18 may provide a novel therapeutic target for mood, pain, and/or eating disorders, and further investigation is warranted to better discern its function.


Oxidative stress biomarkers in some rat brain structures and peripheral organs underwent cocaine.

  • Lucyna Pomierny-Chamioło‎ et al.
  • Neurotoxicity research‎
  • 2013‎

Oxidative stress (OS) generates or intensifies cocaine-evoked toxicity in the brain and peripheral organs. The aim of this study was to examine superoxide dismutase (SOD) activity and lipid peroxidation [measured by malondialdehyde (MDA) levels] in rats during maintenance of cocaine self-administration and after withdrawal by a yoked-triad procedure. Our results indicate that repeated cocaine self-administration provoked an elevation of SOD activity in the hippocampus, frontal cortex, dorsal striatum, and liver. MDA levels were reduced in the brain, increased in the liver, kidney, and heart during maintenance of self-administration, and increased in the kidney in cocaine-yoked rats. In addition, following extinction training, we found enhanced MDA levels and SOD activity in the rat hippocampus, while changes in the activity of OS biomarkers in other brain structures and peripheral tissues were reminiscent of the changes seen during cocaine self-administration. These findings highlight the association between OS biomarkers in motivational processes related to voluntary cocaine intake in rats. OS participates in memory and learning impairments that could be involved in drug toxicity and addiction mechanisms. Therefore, further studies are necessary to address protective mechanisms against cocaine-induced brain and peripheral tissue damage.


Cocaine abstinence modulates NMDA receptor subunit expression: An analysis of the GluN2B subunit in cocaine-seeking behavior.

  • Irena Smaga‎ et al.
  • Progress in neuro-psychopharmacology & biological psychiatry‎
  • 2021‎

Cocaine use disorder develops in part due to the strong associations formed between drugs and the stimuli associated with drug use. Recently, treatment strategies including manipulations of drug-associated memories have been investigated, and the possibility of interfering with N-methyl-d-aspartate (NMDA)-mediated neurotransmission may represent an important option. The aim of this study was to examine the significance of the NMDA receptor subunit GluN2B at the molecular level (the expression of the GluN2B subunit, the Grin2B gene and the association of GluN2B with postsynaptic density protein 95 (PSD95)) in the brain structures of rats with a history of cocaine self-administration after i) cocaine abstinence with extinction training or ii) cocaine abstinence without instrumental tasks, as well as at the pharmacological level (peripheral or intracranial administration of CP 101,606, a GluN2B subunit antagonist during the cocaine- or cue-induced reinstatement). The GluN2B subunit levels and the GluN2B/PSD95 complex levels were either increased in the ventral hippocampus (vHIP) with higher levels of Grin2B gene expression in the HIP or decreased in the dorsal striatum (dSTR) after cocaine abstinence with extinction training. Moreover, CP 101,606, a GluN2B subunit antagonist, administered peripherally, attenuated the reinstatement of active lever presses induced by a priming dose of cocaine or by drug-associated conditioned stimuli, while injection into the vHIP reduced the cocaine- or cue with the subthreshold dose of cocaine-induced reinstatement. In cocaine abstinence without instrumental tasks, an increase in the GluN2B subunit levels and the level of the GluN2B/PSD95 complex in the dSTR was observed in rats that had previously self-administered cocaine. In conclusion, cocaine abstinence with extinction training seems to be associated with the up-regulation of the hippocampal GluN2B subunits, which seems to control cocaine-seeking behavior.


Maternal dietary patterns are associated with susceptibility to a depressive-like phenotype in rat offspring.

  • Kinga Gawlińska‎ et al.
  • Developmental cognitive neuroscience‎
  • 2021‎

Environmental factors such as maternal diet, determine the pathologies that appear early in life and can persist in adulthood. Maternally modified diets provided through pregnancy and lactation increase the predisposition of offspring to the development of many diseases, including obesity, diabetes, and neurodevelopmental and mental disorders such as depression. Fetal and early postnatal development are sensitive periods in the offspring's life in which maternal nutrition influences epigenetic modifications, which results in changes in gene expression and affects molecular phenotype. This study aimed to evaluate the impact of maternal modified types of diet, including a high-fat diet (HFD), high-carbohydrate diet (HCD) and mixed diet (MD) during pregnancy and lactation on phenotypic changes in rat offspring with respect to anhedonia, depressive- and anxiety-like behavior, memory impairment, and gene expression profile in the frontal cortex. Behavioral results indicate that maternal HFD provokes depressive-like behavior and molecular findings showed that HFD leads to persistent transcriptomics alterations. Moreover, a HFD significantly influences the expression of neuronal markers specific to excitatory and inhibitory cortical neurons. Collectively, these experiments highlight the complexity of the impact of maternal modified diet during fetal programming. Undoubtedly, maternal HFD affects brain development and our findings suggest that nutrition exerts significant changes in brain function that may be associated with depression.


A maternal high-fat diet during pregnancy and lactation induced depression-like behavior in offspring and myelin-related changes in the rat prefrontal cortex.

  • Małgorzata Frankowska‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2023‎

In accordance with the developmental origins of health and disease, early-life environmental exposures, such as maternal diet, can enhance the probability and gravity of health concerns in their offspring in the future. Over the past few years, compelling evidence has emerged suggesting that prenatal exposure to a maternal high-fat diet (HFD) could trigger neuropsychiatric disorders in the offspring, such as depression. The majority of brain development takes place before birth and during lactation. Nevertheless, our understanding of the impact of HFD on myelination in the offspring's brain during both gestation and lactation remains limited. In the present study, we investigated the effects of maternal HFD (60% energy from fat) on depressive-like and myelin-related changes in adolescent and adult rat offspring. Maternal HFD increased immobility time during the forced swimming test in both adolescent and adult offspring. Correspondingly, the depressive-like phenotype in offspring correlated with dysregulation of several genes and proteins in the prefrontal cortex, especially of myelin-oligodendrocyte glycoprotein (MOG), myelin and lymphocyte protein (MAL), 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase), kallikrein 6, and transferrin in male offspring, as well as of MOG and kallikrein 6 in female offspring, which persist even into adulthood. Maternal HFD also induced long-lasting adaptations manifested by the reduction of immature and mature oligodendrocytes in the prefrontal cortex in adult offspring. In summary, maternal HFD-induced changes in myelin-related genes are correlated with depressive-like behavior in adolescent offspring, which persists even to adulthood.


Social Interaction in Adolescent Rats with Neonatal Ethanol Exposure: Impact of Sex and CE-123, a Selective Dopamine Reuptake Inhibitor.

  • Justyna Socha‎ et al.
  • International journal of molecular sciences‎
  • 2024‎

Children with fetal alcohol spectrum disorders (FASDs) demonstrate deficits in social functioning that contribute to early withdrawal from school and delinquency, as well as the development of anxiety and depression. Dopamine is involved in reward, motivation, and social behavior. Thus, we evaluated whether neonatal ethanol exposure (in an animal model of FASDs) has an impact on social recognition memory using the three-chamber social novelty discrimination test during early and middle adolescence in male and female rats, and whether the modafinil analog, the novel atypical dopamine reuptake inhibitor CE-123, can modify this effect. Our study shows that male and female rats neonatally exposed to ethanol exhibited sex- and age-dependent deficits in social novelty discrimination in early (male) and middle (female) adolescence. These deficits were specific to the social domain and not simply due to more general deficits in learning and memory because these animals did not exhibit changes in short-term recognition memory in the novel object recognition task. Furthermore, early-adolescent male rats that were neonatally exposed to ethanol did not show changes in the anxiety index but demonstrated an increase in locomotor activity. Chronic treatment with CE-123, however, prevented the appearance of these social deficits. In the hippocampus of adolescent rats, CE-123 increased BDNF and decreased its signal transduction TrkB receptor expression level in ethanol-exposed animals during development, suggesting an increase in neuroplasticity. Thus, selective dopamine reuptake inhibitors, such as CE-123, represent interesting drug candidates for the treatment of deficits in social behavior in adolescent individuals with FASDs.


Amphetamine Self-Administration and Its Extinction Alter the 5-HT1B Receptor Protein Levels in Designated Structures of the Rat Brain.

  • Joanna Miszkiel‎ et al.
  • Neurotoxicity research‎
  • 2019‎

Manipulation of the serotonin (5-HT)1B receptors can modify the behavioral effects of amphetamine including its reinforcing properties. Focus of this study was to examine changes in 5-HT1B receptor protein expression in several brain structures linked to substance drug disorder in different stages of amphetamine addiction-single session of amphetamine self-administration, 20 consecutive days of amphetamine self-administration, and 3 and 14 days of extinction from chronic drug intake. "Yoked" procedure was employed to set apart pharmacological and motivational effects of amphetamine intoxication. Immunohistofluorescence was performed on brain slices containing the following regions: nucleus accumbens (NAc) shell and core, globus pallidum (GP) lateral and ventral, hippocampus (HIP), substantia nigra (SN), and ventral tegmental area (VTA). Single amphetamine session decreased the amount of 5-HT1B receptors in SN, VTA, and HIP in active and yoked rats. On the contrary, 20 days of chronic amphetamine exposure triggered elevation of 5-HT1B receptors exclusively in animals that voluntarily administered the drug in NAc core, GP ventral, and HIP. Furthermore, 14-day (but not 3-day) extinction from amphetamine increased the 5-HT1B receptor expression in ventral and lateral GP, HIP, and SN. This study is the first to demonstrate that exposure to amphetamine and its extinction alter the expression of 5-HT1B receptors in various rat brain regions, and those changes seem to be transient and region specific. Importantly, since increased expression of 5-HT1B receptor after chronic amphetamine self-administration was limited only to active group of animals, we suggest that 5-HT1B receptor is linked to motivational aspect of addiction.


Cocaine Administration and Its Withdrawal Enhance the Expression of Genes Encoding Histone-Modifying Enzymes and Histone Acetylation in the Rat Prefrontal Cortex.

  • Anna Sadakierska-Chudy‎ et al.
  • Neurotoxicity research‎
  • 2017‎

Chronic exposure to cocaine, craving, and relapse are attributed to long-lasting changes in gene expression arising through epigenetic and transcriptional mechanisms. Although several brain regions are involved in these processes, the prefrontal cortex seems to play a crucial role not only in motivation and decision-making but also in extinction and seeking behavior. In this study, we applied cocaine self-administration and extinction training procedures in rats with a yoked triad to determine differentially expressed genes in prefrontal cortex. Microarray analysis showed significant upregulation of several genes encoding histone modification enzymes during early extinction training. Subsequent real-time PCR testing of these genes following cocaine self-administration or early (third day) and late (tenth day) extinction revealed elevated levels of their transcripts. Interestingly, we found the enrichment of Brd1 messenger RNA in rats self-administering cocaine that lasted until extinction training during cocaine withdrawal with concomitant increased acetylation of H3K9 and H4K8. However, despite elevated levels of methyl- and demethyltransferase-encoded transcripts, no changes in global di- and tri-methylation of histone H3 at lysine 4, 9, 27, and 79 were observed. Surprisingly, at the end of extinction training (10 days of cocaine withdrawal), most of the analyzed genes in the rats actively and passively administering cocaine returned to the control level. Together, the alterations identified in the rat prefrontal cortex may suggest enhanced chromatin remodeling and transcriptional activity induced by early cocaine abstinence; however, to know whether they are beneficial or not for the extinction of drug-seeking behavior, further in vivo evaluation is required.


Changes in the glutamate biomarker expression in rats vulnerable or resistant to the rewarding effects of cocaine and their reversal by ceftriaxone.

  • Ewa Niedzielska-Andres‎ et al.
  • Behavioural brain research‎
  • 2019‎

Literature data show diverse vulnerability to the rewarding effects of cocaine in human as well as in laboratory animals. The molecular mechanisms of these differences have not been discovered yet. While the initial effects of cocaine depend primarily on the dopamine system, numerous studies have shown that adaptation within the glutamatergic system is responsible for the development of addiction. In this paper, we used the unbiased conditioned place preference (CPP) to identify rats showing a vulnerable or resistant phenotype to the rewarding effects of cocaine. Next, we investigated the expression of membrane glutamate transporter proteins: GLT-1 and xCT in selected brain structures in the above-mentioned groups of rats. Moreover, we determined the nuclear level of NF-κB and Nrf2 to verify whether changes in GLT-1 and xCT expression correlate with NF-κB and Nrf2 levels, respectively. In addition, we determined GLT-1, NF-κB, xCT and Nrf2 mRNA levels to verify the involvement of transcriptional mechanisms. We also analyzed the ability of the β-lactam antibiotic, ceftriaxone, to attenuate the persistence of CPP after a cocaine-free period in animals showing vulnerability to cocaine rewarding effects, and furthermore we determined GLT-1, xCT, NF-κB and Nrf2 protein expression. Our findings demonstrated molecular and neurochemical differences in the response to cocaine administration that are characteristic of the phenotype vulnerable or resistant to the rewarding effects of cocaine. Moreover, repeated administrations of ceftriaxone during cocaine-free perios attenuated CPP persistence and normalized GLT-1 level in the NAc. The results suggest the a lack of NF-κB involvement in the regulation of GLT-1 expression by ceftriaxone in the NAc. Additionally, we are the first to report that ceftriaxone strongly upregulates the GLT-1 in the HIP in a transcriptional mechanism involving the Nf-κB transcription factor. Future experiments may resolve the question concerning whether modulation exclusively of the GLT-1 expression in the HIP may attenuate cocaine-induced place preference or relapse.


Cocaine-Induced Reinstatement of Cocaine Seeking Provokes Changes in the Endocannabinoid and N-Acylethanolamine Levels in Rat Brain Structures.

  • Beata Bystrowska‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

There is strong support for the role of the endocannabinoid system and the noncannabinoid lipid signaling molecules, N-acylethanolamines (NAEs), in cocaine reward and withdrawal. In the latest study, we investigated the changes in the levels of the above molecules and expression of cannabinoid receptors (CB1 and CB2) in several brain regions during cocaine-induced reinstatement in rats. By using intravenous cocaine self-administration and extinction procedures linked with yoked triad controls, we found that a priming dose of cocaine (10 mg/kg, i.p.) evoked an increase of the anadamide (AEA) level in the hippocampus and prefrontal cortex only in animals that had previously self-administered cocaine. In the same animals, the level of 2-arachidonoylglycerol (2-AG) increased in the hippocampus and nucleus accumbens. Moreover, the drug-induced relapse resulted in a potent increase in NAEs levels in the cortical areas and striatum and, at the same time, a decrease in the tissue levels of oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) was noted in the nucleus accumbens, cerebellum, and/or hippocampus. At the level of cannabinoid receptors, a priming dose of cocaine evoked either upregulation of the CB1 and CB2 receptors in the prefrontal cortex and lateral septal nuclei or downregulation of the CB1 receptors in the ventral tegmental area. In the medial globus pallidus we observed the upregulation of the CB2 receptor only after yoked chronic cocaine treatment. Our findings support that in the rat brain, the endocannabinoid system and NAEs are involved in cocaine induced-reinstatement where these molecules changed in a region-specific manner and may represent brain molecular signatures for the development of new treatments for cocaine addiction.


Extinction Training after Cocaine Self-Administration Influences the Epigenetic and Genetic Machinery Responsible for Glutamatergic Transporter Gene Expression in Male Rat Brain.

  • Irena Smaga‎ et al.
  • Neuroscience‎
  • 2020‎

Glutamate is a key excitatory neurotransmitter in the central nervous system. The balance of glutamatergic transporter proteins allows long-term maintenance of glutamate homeostasis in the brain, which is impaired during cocaine use disorder. The aim of this study was to investigate changes in the gene expression of SLC1A2 (encoding GLT-1), and SLC7A11 (encoding xCT), in rat brain structures after short-term (3 days) and long-term (10 days) extinction training using microarray analysis and quantitative real-time PCR. Furthermore, we analyzed the expression of genes encoding transcription factors, i.e., NFKB1 and NFKB2 (encoding NF-κB), PAX6, (encoding Pax6), and NFE2L2 (encoding Nrf2), to verify the correlation between changes in glutamatergic transporters and changes in their transcriptional factors and microRNAs (miRNAs; miR-124a, miR-543-3p and miR-342-3p) and confirm the epigenetic mechanism. We found reduced GLT-1 transcript and mRNA level in the prefrontal cortex (PFCTX) and dorsal striatum (DSTR) in rats that had previously self-administered cocaine after 3 days of extinction training, which was associated with downregulation of PAX6 (transcript and mRNA) and NFKB2 (mRNA) level in the PFCTX and with upregulation of miR-543-3p and miR-342-3p in the DSTR. The xCT mRNA level was reduced in the PFCTX and DSTR, and NFE2L2 transcript level in the PFCTX was decreased on the 3rd day of extinction training. In conclusion, 3-day drug-free period modulates GLT-1 and xCT gene expression through genetic and epigenetic mechanisms, and such changes in expression seem to be potential molecular targets for developing a treatment for cocaine-seeking behavior.


Effects of Mephedrone and Amphetamine Exposure during Adolescence on Spatial Memory in Adulthood: Behavioral and Neurochemical Analysis.

  • Pawel Grochecki‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

A synthetic cathinone, mephedrone is widely abused by adolescents and young adults. Despite its widespread use, little is known regarding its long-term effects on cognitive function. Therefore, we assessed, for the first time, whether (A) repeated mephedrone (30 mg/kg, i.p., 10 days, once a day) exposure during adolescence (PND 40) induces deleterious effects on spatial memory and reversal learning (Barnes maze task) in adult (PND 71-84) rats and whether (B) these effects were comparable to amphetamine (2.5 mg/kg, i.p.). Furthermore, the influence of these drugs on MMP-9, NMDA receptor subunits (GluN1, GluN2A/2B) and PSD-95 protein expression were assessed in adult rats. The drug effects were evaluated at doses that per se induce rewarding/reinforcing effects in rats. Our results showed deficits in spatial memory (delayed effect of amphetamine) and reversal learning in adult rats that received mephedrone/amphetamine in adolescence. However, the reversal learning impairment may actually have been due to spatial learning rather than cognitive flexibility impairments. Furthermore, mephedrone, but not amphetamine, enhanced with delayed onset, MMP-9 levels in the prefrontal cortex and the hippocampus. Mephedrone given during adolescence induced changes in MMP-9 level and up-regulation of the GluN2B-containing NMDA receptor (prefrontal cortex and hippocampus) in young adult (PND 63) and adult (PND 87) rats. Finally, in adult rats, PSD-95 expression was increased in the prefrontal cortex and decreased in the hippocampus. In contrast, in adult rats exposed to amphetamine in adolescence, GluN2A subunit and PSD-95 expression were decreased (down-regulated) in the hippocampus. Thus, in mephedrone-but not amphetamine-treated rats, the deleterious effects on spatial memory were associated with changes in MMP-9 level. Because the GluN2B-containing NMDA receptor dominates in adolescence, mephedrone seems to induce more harmful effects on cognition than amphetamine does during this period of life.


Alteration of the Early Development Environment by Maternal Diet and the Occurrence of Autistic-like Phenotypes in Rat Offspring.

  • Kinga Gawlińska‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Epidemiological and preclinical studies suggest that maternal obesity increases the risk of autism spectrum disorder (ASD) in offspring. Here, we assessed the effects of exposure to modified maternal diets limited to pregnancy and lactation on brain development and behavior in rat offspring of both sexes. Among the studied diets, a maternal high-fat diet (HFD) disturbed the expression of ASD-related genes (Cacna1d, Nlgn3, and Shank1) and proteins (SHANK1 and TAOK2) in the prefrontal cortex of male offspring during adolescence. In addition, a maternal high-fat diet induced epigenetic changes by increasing cortical global DNA methylation and the expression of miR-423 and miR-494. As well as the molecular changes, behavioral studies have shown male-specific disturbances in social interaction and an increase in repetitive behavior during adolescence. Most of the observed changes disappeared in adulthood. In conclusion, we demonstrated the contribution of a maternal HFD to the predisposition to an ASD-like phenotype in male adolescent offspring, while a protective effect occurred in females.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: