Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 57 papers

Synaptic and cellular changes induced by the schizophrenia susceptibility gene G72 are rescued by N-acetylcysteine treatment.

  • B Pósfai‎ et al.
  • Translational psychiatry‎
  • 2016‎

Genetic studies have linked the primate-specific gene locus G72 to the development of schizophrenia and bipolar disorder. Transgenic mice carrying the entire gene locus express G72 mRNA in dentate gyrus (DG) and entorhinal cortex, causing altered electrophysiological properties of their connections. These transgenic mice exhibit behavioral alterations related to psychiatric diseases, including cognitive deficits that can be reversed by treatment with N-acetylcysteine, which was also found to be effective in human patients. Here, we show that G72 transgenic mice have larger excitatory synapses with an increased amount of N-methyl-d-aspartate (NMDA) receptors in the molecular layer of DG, compared with wild-type littermates. Furthermore, transgenic animals have lower number of dentate granule cells with a parallel, but an even stronger decrease in the number of excitatory synapses in the molecular layer. Importantly, we also show that treatment with N-acetylcysteine can effectively normalize all these changes in transgenic animals, resulting in a state similar to wild-type mice. Our results show that G72 transcripts induce robust alterations in the glutamatergic system at the synaptic level that can be rescued with N-acetylcysteine treatment.


Aberrant activation of the mTOR pathway and anti-tumour effect of everolimus on oesophageal squamous cell carcinoma.

  • K Hirashima‎ et al.
  • British journal of cancer‎
  • 2012‎

The mammalian target of rapamycin (mTOR) protein is important for cellular growth and homeostasis. The presence and prognostic significance of inappropriate mTOR activation have been reported for several cancers. Mammalian target of rapamycin inhibitors, such as everolimus (RAD001), are in development and show promise as anti-cancer drugs; however, the therapeutic effect of everolimus on oesophageal squamous cell carcinoma (OSCC) remains unknown.


Strong neuroprotection with a novel platinum nanoparticle against ischemic stroke- and tissue plasminogen activator-related brain damages in mice.

  • M Takamiya‎ et al.
  • Neuroscience‎
  • 2012‎

Reactive oxygen species (ROS) are major exacerbation factor in acute ischemic stroke, and thrombolytic agent tissue plasminogen activator (tPA) may worsen motor function and cerebral infarcts. The platinum nanoparticle (nPt) is a novel ROS scavenger, and thus we examined the clinical and neuroprotective effects of nPt in ischemic mouse brains. Mice were subjected to transient middle cerebral artery occlusion (tMCAO) for 60 min and divided into the following four groups by intravenous administration upon reperfusion, vehicle, tPA, tPA+nPt, and nPt. At 48 h after tMCAO, motor function, infarct volume, immunohistochemical analyses of neurovascular unit (NVU), in vivo imaging of matrix metalloproteinase (MMP), and zymography for MMP-9 activity were examined. Superoxide anion generation at 2h after tMCAO was also examined with hydroethidine (HEt). As a result, administration of tPA deteriorated the motor function and infarct volume as compared to vehicle. In vivo optical imaging of MMP showed strong fluorescent signals in affected regions of tMCAO groups. Immunohistochemical analyses revealed that tMCAO resulted in a minimal decrease of NAGO and occludin, but a great decrease of collagen IV and a remarkable increase of MMP-9. HEt stain showed increased ROS generation by tMCAO. All these results became pronounced with tPA administration, and were greatly reduced by nPt. The present study demonstrates that nPt treatment ameliorates neurological function and brain damage in acute cerebral infarction with neuroprotective effect on NVU and inactivation of MMP-9. The strong reduction of ROS production by nPt could account for these remarkable neurological and neuroprotective effects against ischemic stroke.


Selective growth inhibition by glycogen synthase kinase-3 inhibitors in tumorigenic HeLa hybrid cells is mediated through NF-κB-dependent GLUT3 expression.

  • M Watanabe‎ et al.
  • Oncogenesis‎
  • 2012‎

Carcinogenesis and cancer progression, driven by mutations in oncogenes and tumor-suppressor genes, result in biological differences between normal and cancer cells in various cellular processes. Specific genes and signaling molecules involved in such cellular processes may be potential therapeutic targets of agents that specifically interact with the key factors in cancer cells. Increased glucose uptake is fundamental to many solid tumors and well associated with increases in glycolysis and the overexpression of glucose transporters (GLUTs) such as GLUT1 and GLUT3 at the plasma membrane. Here, we used cell-based screening to identify glycogen synthase kinase-3β (GSK-3β) inhibitors that selectively target GLUT3-expressing tumorigenic HeLa cell hybrids as compared with non-tumorigenic hybrids that express GLUT1 alone. The GSK-3 inhibitors as well as GSK-3β RNAi suppressed GLUT3 expression at the level of transcription, leading to apoptosis. This suppression was associated with NF-κB in a p53-independent manner. Furthermore, GSK-3 inhibitors exhibited a synergistic effect with anticancer agents such as adriamycin and camptothecin in GULT3-overexpressing colon cancer cells, but little effect in non-producing A431 cells. These results suggest a potential use of GSK-3 inhibitors to selectively kill cancer cells that overexpress GLUT3.


Tumor growth and metastasis suppression by Glipr1 gene-modified macrophages in a metastatic prostate cancer model.

  • K Tabata‎ et al.
  • Gene therapy‎
  • 2011‎

We previously identified the mouse and human Glipr1 and GLIPR1/RTVP-1 genes, respectively, as direct p53 targets with proapoptotic activities in various cancer cell lines, including prostate cancer (PCa). Intratumoral injection of an adenoviral vector capable of efficient transduction and expression of Glipr1 (AdGlipr1) yielded promising therapeutic results in an orthotopic, metastatic mouse model of PCa. AdGlipr1-transduced macrophages (Mφ/Glipr1) generated greater surface expression of CD40, CD80 and major histocompatibility complex class II molecules and greater production of interleukin 12 (IL-12) and IL-6 in vitro than control macrophages did. Mechanistic analysis indicated that increased production of IL-12 in Mφ/Glipr1 depends on activation of the p38 signaling cascade. Mφ/Glipr1 injected into orthotopic 178-2BMA tumors in vivo resulted in significantly suppressed prostate tumor growth and spontaneous lung metastases and longer survival relative to those observed in control-treated mice. Furthermore, these preclinical data indicate the generation of systemic natural killer cell activity and tumor-specific cytotoxic T lymphocyte responses. Trafficking studies confirmed that intratumorally injected Mφ/Glipr1 could migrate to draining lymph nodes. Overall, our data suggest that this novel gene-modified cell approach is an effective treatment avenue that induces antitumor immune responses in preclinical studies.


Methylation levels of LINE-1 in primary lesion and matched metastatic lesions of colorectal cancer.

  • A Murata‎ et al.
  • British journal of cancer‎
  • 2013‎

LINE-1 methylation level is a surrogate marker of global DNA methylation. LINE-1 methylation in primary colorectal cancers (CRCs) is highly variable and strongly associated with a poor prognosis. However, no study has examined LINE-1 methylation levels of metastatic CRCs in relation to prognosis or assessed the heterogeneity of LINE-1 methylation level within the primary CRCs.


Inverse correlation of HER2 with MHC class I expression on oesophageal squamous cell carcinoma.

  • T Maruyama‎ et al.
  • British journal of cancer‎
  • 2010‎

As HER2 is expressed in 30% of oesophageal squamous cell carcinomas (ESCCs), T-cell-based immunotherapy and monoclonal antibodies targeted against HER2 are attractive, novel approaches for ESCCs. However, it was shown that there is an inverse correlation between HER2 and MHC class I expression on tumours. Thus, the correlation between HER2 and MHC class I expressions on ESCC was evaluated.


Astroglial expression of ceramide in Alzheimer's disease brains: a role during neuronal apoptosis.

  • H Satoi‎ et al.
  • Neuroscience‎
  • 2005‎

Accumulating evidences indicate that ceramide is closely involved in apoptotic cell death in neurodegenerative disorders and aging. We examined ceramide levels in the cerebrospinal fluid (CSF) or brain tissues from patients with neurodegenerative disorders and the mechanism of how intra- and extracellular ceramide was regulated during neuronal apoptosis. We screened the ceramide levels in the CSF of patients with neurodegenerative disorders, and found that ceramide was significantly increased in patients with Alzheimer's disease (AD) than in patients with age-matched amyotrophic lateral sclerosis (ALS) and other neurological controls. With immunohistochemistry in AD brains, ceramide was aberrantly expressed in astroglia in the frontal cortices, but not detected in ALS and control brains. To explore for the regulation of ceramide in astroglia in Alzheimer's disease brains, we examined the metabolism of ceramide during neuronal apoptosis. In retinoic acid (RA)-induced neuronal apoptosis, RA slightly increased de novo synthesis of ceramide, but interestingly, RA dramatically inhibited conversion of [14C] ceramide to glucosylceramide (GlcCer), suggesting that the increase of ceramide mass is mainly due to inhibition of the ceramide-metabolizing enzyme GlcCer synthase. In addition, a significant increase of the [14C] ceramide level in the culture medium was detected by chasing and turnover experiments without alteration of extracellular [14C] sphingomyelin levels. A 2.5-fold increase of ceramide mass in the supernatant was also detected after 48 h of treatment with RA. These results suggest a regulatory mechanism of intracellular ceramide through inhibition of GlcCer synthase and a possible role of ceramide as an extracellular/intercellular mediator for neuronal apoptosis. The increased ceramide level in the CSF from AD patients, which may be derived from astroglia, raises a possibility of neuronal apoptosis by the response to intercellular ceramide in AD.


Fcgamma receptors contribute to pyramidal cell death in the mouse hippocampus following local kainic acid injection.

  • S Suemitsu‎ et al.
  • Neuroscience‎
  • 2010‎

Recent studies have demonstrated the contribution of the gamma subunit of the Fc receptor of IgG (FcRgamma) to neuronal death following ischemic injury and Parkinson's disease. We examined the role of FcRgamma in hippocampal pyramidal cell death induced by kainic acid (KA). FcRgamma-deficient mice (FcRgamma-/-) and their FcRgamma+/+ littermates (wild type, B6) received an injection of KA into the dorsal hippocampus. Pyramidal cell death was quantified 24 and 72 h after the injection. The number of survived pyramidal cells was significantly larger in FcRgamma-/- mice than in B6 mice in both the CA1 and CA3. Immunohistochemical and immunofluorescent studies detected FcgammaRIIB protein in parvalbumin neurons, whereas FcgammaRIII and FcgammaRI proteins were detected in microglial cells. No activated microglial cells were detected 24 h after the KA injection in FcRgamma-/- mice, whereas many activated microglial cells were present in B6 mice. The production of nitrotyrosine as well as of the inducible nitric oxide synthase and cyclooxygenase-2 proteins, increased by 16 h after the KA injection in B6 mice. In addition, tissue plasminogen activator and metalloproteinase-2 proteins increased. By contrast, the magnitude of oxidative stress and the increase in protease expression were mild in FcRgamma-/- mice. Co-injection of a neutralizing antibody against FcgammaRll and FcgammaRlll with KA abolished pyramidal cell death and microglial activation. In addition, the neutralizing antibody reduced oxidative stress and expression of proteases. These observations suggested a role for FcgammaRllB in parvalbumin neurons as well as FcRgamma in microglia in pyramidal cell death.


Survival and axonal regeneration of off-center retinal ganglion cells of adult cats are promoted with an anti-glaucoma drug, nipradilol, but not BDNF and CNTF.

  • T Yata‎ et al.
  • Neuroscience‎
  • 2007‎

OFF-center retinal ganglion cells (RGCs) occupy a smaller proportion than ON RGCs when RGCs regenerate axons into a transplanted peripheral nerve. We examined whether the regeneration ability of OFF RGCs in adult cats was promoted when the numbers of regenerating RGCs were increased with brain-derived neurotrophic factor (BDNF)+ciliary neurotrophic factor (CNTF)+forskolin (BCF) or 3,4-dihydro-8-(2-hydroxy-3-isopropylamino)-propoxy-3-nitroxy-2H-1-benzopyran (nipradilol), an anti-glaucoma drug. ON or OFF RGCs were morphologically determined on the basis of their dendritic ramification in the inner plexiform layer using computational analysis. In the normal intact retina the ratio of ON and OFF RGCs (ON/OFF ratio) was 1.25 (55%/44%); whereas, it was 2.61 in regenerating RGCs with saline injection (control) 6 weeks after peripheral nerve transplantation. Estimated numbers of regenerating ON and OFF RGCs were 2149 and 895, respectively. An injection of BCF increased only numbers of ON RGCs into 5766 (2.7-fold to control) but not that of OFF RGCs, n=858. Nipradilol increased both estimated numbers of ON (11,518, 5.4-fold to control) and OFF RGCs (7330, 8.2-fold to control). In the retinas with optic nerve (OpN) transection and intravitreal saline-, BCF- or nipradilol-injection, numbers of ON and OFF RGCs surviving axotomy showed similar trend to that in regenerating RGCs. Thus, nipradilol promoted the survival and regeneration abilities of both of ON and OFF RGCs whereas BCF only did the abilities of ON RGCs. The distribution of tropo-myosin-related kinase B, BDNF receptor, was sparser in the outer two thirds of inner plexiform layer. The lower surviving ability of OFF-RGCs may be attributed in part to the distribution.


[Reproductive and developmental toxicity studies of lactitol (NS-4) (1)--Fertility study in rats by oral administration].

  • H Ninomiya‎ et al.
  • The Journal of toxicological sciences‎
  • 1994‎

A study of fertility and fetal development was conducted in Sprague-Dawley rats. Male rats were given lactitol, a hepatic encephalopathy drug, orally from 63 days before mating to the end of mating period. Female rats were given from 14 days before mating to day 7 of pregnancy. The dose levels for both males and females were 0 (control), 0.7, 2.65 and 10 g/kg. The females were sacrificed on day 20 of pregnancy for examination of their fetuses. The decrease in food consumption in either male or female was observed in the intermediate and high dose groups. The high dose caused soft stool, diarrhea and increase in water consumption in either male or female. Moreover, the high dose caused salivation and suppression of body weight gain in male. In the pathological examination, the enlargement of cecum were observed in male of the intermediate and high dose groups. The increase in cecum weight were observed in male in all lactitol groups, and in female of the high dose group. Lactitol did not affect on copulation and fertility indexes in either male or female rats. Lactitol failed to affect on estrous cycle in female rats, and number of corpora lutea, implantations and preimplantation egg losses. In the fetal examination, lactitol did not affect on the development of live fetuses. The results show that no-effect dose levels of lactitol are less than 0.7 g/kg in male rats and 0.7 g/kg in female rats for general toxicity, and 10 g/kg for reproductive function in parent animals and fetuses.


Drosophila CtBP: a Hairy-interacting protein required for embryonic segmentation and hairy-mediated transcriptional repression.

  • G Poortinga‎ et al.
  • The EMBO journal‎
  • 1998‎

hairy is a Drosophila pair-rule segmentation gene that functions genetically as a repressor. To isolate protein components of Hairy-mediated repression, we used a yeast interaction screen and identified a Hairy-interacting protein, the Drosophila homolog of the human C-terminal-binding protein (CtBP). Human CtBP is a cellular phosphoprotein that interacts with the C-terminus of the adenovirus E1a oncoprotein and functions as a tumor suppressor. dCtBP also interacts with E1a in a directed yeast two-hybrid assay. We show that dCtBP interacts specifically and directly with a small, previously uncharacterized C-terminal region of Hairy. dCtBP activity appears to be specific to Hairy of the Hairy/Enhancer of split [E(spl)]/Dpn basic helix-loop-helix protein class. We identified a P-element insertion within the dCtBP transcription unit that fails to complement alleles of a known locus, l(3)87De. We demonstrate that dCtBP is essential for proper embryonic segmentation by analyzing embryos lacking maternal dCtBP activity. While Hairy is probably not the only segmentation gene interacting with dCtBP, we show dose-sensitive genetic interactions between dCtBP and hairy mutations.


Role of epidermal growth factor and its receptor in mechanical stress-induced differentiation of human periodontal ligament cells in vitro.

  • N Matsuda‎ et al.
  • Archives of oral biology‎
  • 1998‎

The periodontal ligament (PDL) contains precursor cells for osteoblasts and cementoblasts. It has been shown that epidermal growth factor (EGF) inhibits dexamethasone-induced differentiation and up-regulates EGF-receptor (EGF-R) expression, whereas EGF-R is down-regulated in the course of differentiation. Thus it was suggested that EGF and its receptors act as a negative regulator of osteoblastic differentiation in PDL cells. In order to investigate further this hypothesis, human PDL cells were now used to elucidate the role of EGF and EGF-R in their proliferation and differentiation under mechanical stress-loaded conditions in vitro, as the PDL regularly receives mechanical stress from occlusal forces. As a model of mechanical stress, a cyclic stretch of 9 or 18% elongation was applied to the cells with a Flexercell cell-strain unit system. Alkaline phosphatase activity and osteocalcin mRNA expression were significantly induced by loading cyclic stretch for more than 4 days, whereas stretch slightly inhibited cell proliferation. Visualization of the actin stress fibres of the cells by rhodamine phalloidin revealed that approx. 10% of the total number of cells had become aligned perpendicularly to the direction of the stretch. The effects of stretch on alkaline phosphatase activity and cell proliferation were totally abolished by the presence of 10 ng/ml EGF. Western blotting of EGF-R protein demonstrated that stretch-induced differentiation accompanied the decreased expression of EGF-R protein in the cells. However, the amount of tyrosine-phosphorylated EGF-R upon EGF stimulation was restored to the control level in stretched cells. These results suggest that the EGF/EGF-R system acts as a negative regulator of differentiation of PDL cells regardless of the type of differentiation stimuli. Also, interaction between mechanical stress and the EGF/EGF-R system may participate in the osteoblastic differentiation of PDL cells and thereby regulate the source of cementoblasts and osteoblasts.


Correlation of MRI and clinical features in meningeal carcinomatosis.

  • M Watanabe‎ et al.
  • Neuroradiology‎
  • 1993‎

Ten patients with meningeal carcinomatosis associated with nonhaematological neoplasms were examined: six with breast, two with gastrointestinal and one with lung cancer, plus one with a tumour of unknown origin. Cytology was positive in all but one. The patients were classified into four groups according to the gadolinium-enhanced MRI (Gd-MRI) appearances: group 1 had pure leptomeningeal carcinomatosis, group 2 dural carcinomatosis, group 3 spinal leptomeningeal carcinomatosis, and group 4 had normal Gd-MRI except for hydrocephalus. In group 1, Gd-MRI showed diffuse enhancement of the subarachnoid space, including the cisterns around the midbrain, the sylvian fissures, or cerebellar and cerebral sulci. In group 2, Gd-MRI showed diffuse, thick, partially nodular enhancement of the dura mater. No leptomeningeal or subependymal enhancement was evident. In group 3, nodular masses were seen only in the spinal canal. In group 4, no definite evidence of meningeal carcinomatosis was demonstrated on contrast-enhanced CT (CE-CT) or Gd-MRI. The median survival time was 2.0 months in group 1, 1.0 month in group 3, and 4.5 months in group 4, but the two patients in group 2 were alive 10 and 15 months after a definite diagnosis of meningeal carcinomatosis was made. In all patients examined by both CE-CT and Gd-MRI, the latter was superior for identification of meningeal carcinomatosis. Hydrocephalus in an important indirect sign of leptomeningeal carcinomatosis, but was not seen in patients with dural carcinomatosis despite the presence of increased intracranial pressure.


Nitroimidazole carboxamides as antiparasitic agents targeting Giardia lamblia, Entamoeba histolytica and Trichomonas vaginalis.

  • A M Jarrad‎ et al.
  • European journal of medicinal chemistry‎
  • 2016‎

Diarrhoeal diseases caused by the intestinal parasites Giardia lamblia and Entamoeba histolytica constitute a major global health burden. Nitroimidazoles are first-line drugs for the treatment of giardiasis and amebiasis, with metronidazole 1 being the most commonly used drug worldwide. However, treatment failures in giardiasis occur in up to 20% of cases and development of resistance to metronidazole is of concern. We have re-examined 'old' nitroimidazoles as a foundation for the systematic development of next-generation derivatives. Using this approach, derivatisation of the nitroimidazole carboxamide scaffold provided improved antiparasitic agents. Thirty-three novel nitroimidazole carboxamides were synthesised and evaluated for activity against G. lamblia and E. histolytica. Several of the new compounds exhibited potent activity against G. lamblia strains, including metronidazole-resistant strains of G. lamblia (EC50 = 0.1-2.5 μM cf. metronidazole EC50 = 6.1-18 μM). Other compounds showed improved activity against E. histolytica (EC50 = 1.7-5.1 μM cf. metronidazole EC50 = 5.0 μM), potent activity against Trichomonas vaginalis (EC50 = 0.6-1.4 μM cf. metronidazole EC50 = 0.8 μM) and moderate activity against the intestinal bacterial pathogen Clostridium difficile (0.5-2 μg/mL, cf. metronidazole = 0.5 μg/mL). The new compounds had low toxicity against mammalian kidney and liver cells (CC50 > 100 μM), and selected antiparasitic hits were assessed for human plasma protein binding and metabolic stability in liver microsomes to demonstrate their therapeutic potential.


Upregulation of ERCC1 and DPD expressions after oxaliplatin-based first-line chemotherapy for metastatic colorectal cancer.

  • H Baba‎ et al.
  • British journal of cancer‎
  • 2012‎

The updated randomised phase 2/3 FIRIS study demonstrated the noninferiority of IRIS (irinotecan and S-1) to FOLFIRI (irinotecan, folinic acid, and 5-FU) for metastatic colorectal cancer. Meanwhile, in the subset analysis including patients who previously have undergone oxaliplatin-containing chemotherapy, the IRIS group showed longer survival than the FOLFIRI group. However, the molecular mechanism underlying this result is still unknown.


Statins inhibit tumor progression via an enhancer of zeste homolog 2-mediated epigenetic alteration in colorectal cancer.

  • S Ishikawa‎ et al.
  • International journal of cancer‎
  • 2014‎

While statin intake has been proven to reduce the risk of colorectal cancer (CRC), the mechanism of antitumor effects and clinical significance in survival benefits remain unclear. Statin-induced antiproliferative effects and its underlying mechanism were examined using six CRC cell lines. Statins except pravastatin showed antiproliferative effects (simvastatin ≥ fluvastatin > atorvastatin) even though both of simvastatin and pravastatin could activate mevalonate pathways, suggesting the statin-mediated antiproliferative effects depended on non-mevalonate pathway. Indeed, statin induced p27(KIP1) expression by downregulation of histone methyltransferase enhancer of zeste homolog 2 (EZH2), which acts as an epigenetic gene silencer. Additionally, the use of simvastatin plus classII histone deacetylase (HDAC) inhibitor (MC1568) induced further overexpression of p27(KIP1) by inhibiting HDAC5 induction originated from downregulated EZH2 in CRC cells and synergistically led to considerable antiproliferative effects. In the clinical setting, Statin intake (except pravastatin) displayed the downregulated EZH2 expression and inversely upregulated p27(KIP1) expression in the resected CRC by immunohistochemical staining and resulted in the significantly better prognoses both in overall survival (p = 0.02) and disease free survival (p < 0.01) compared to patients without statin intake. Statins may inhibit tumor progression via an EZH2-mediated epigenetic alteration, which results in survival benefits after resected CRC. Furthermore, statin plus classII HDAC inhibitor could be a novel anticancer therapy by their synergistic effects in CRC.


Activation of p38 mitogen-activated protein kinase in the dorsal root ganglion contributes to pain hypersensitivity after plantar incision.

  • K Mizukoshi‎ et al.
  • Neuroscience‎
  • 2013‎

The phosphorylation of p38 mitogen-activated protein kinase (MAPK) in the dorsal root ganglion (DRG) promotes primary afferent sensitization. The role of p38MAPK signaling in the DRG in the pathogenesis of plantar incision hyperalgesia has not been investigated.


SK2 and SK3 expression differentially affect firing frequency and precision in dopamine neurons.

  • J Deignan‎ et al.
  • Neuroscience‎
  • 2012‎

The firing properties of dopamine (DA) neurons in the substantia nigra (SN) pars compacta are strongly influenced by the activity of apamin-sensitive small conductance Ca(2+)-activated K(+) (SK) channels. Of the three SK channel genes expressed in central neurons, only SK3 expression has been identified in DA neurons. The present findings show that SK2 was also expressed in DA neurons. Immuno-electron microscopy (iEM) showed that SK2 was primarily expressed in the distal dendrites, while SK3 was heavily expressed in the soma and, to a lesser extent, throughout the dendritic arbor. Electrophysiological recordings of the effects of the SK channel blocker apamin on DA neurons from wild type and SK(-/-) mice show that SK2-containing channels contributed to the precision of action potential (AP) timing, while SK3-containing channels influenced AP frequency. The expression of SK2 in DA neurons may endow distinct signaling and subcellular localization to SK2-containing channels.


Expression of the vesicular glutamate transporters-1 and -2 in adult mouse dorsal root ganglia and spinal cord and their regulation by nerve injury.

  • P Brumovsky‎ et al.
  • Neuroscience‎
  • 2007‎

The expression of two vesicular glutamate transporters (VGLUTs), VGLUT1 and VGLUT2, was studied with immunohistochemistry in lumbar dorsal root ganglia (DRGs), the lumbar spinal cord and the skin of the adult mouse. About 12% and 65% of the total number of DRG neuron profiles (NPs) expressed VGLUT1 and VGLUT2, respectively. VGLUT1-immunoreactive (IR) NPs were usually medium- to large-sized, in contrast to a majority of small- or medium-sized VGLUT2-IR NPs. Most VGLUT1-IR NPs did not coexpress calcitonin gene-related peptide (CGRP) or bound isolectin B4 (IB4). In contrast, approximately 31% and approximately 42% of the VGLUT2-IR DRG NPs were also CGRP-IR or bound IB4, respectively. Conversely, virtually all CGRP-IR and IB4-binding NPs coexpressed VGLUT2. Moderate colocalization between VGLUT1 and VGLUT2 was also observed. Sciatic nerve transection induced a decrease in the overall number of VGLUT1- and VGLUT2-IR NPs (both ipsi- and contralaterally) and, in addition, a parallel, unilateral increase of VGLUT2-like immunoreactivity (LI) in a subpopulation of mostly small NPs. In the dorsal horn of the spinal cord, strong VGLUT1-LI was detected, particularly in deep dorsal horn layers and in the ventral horns. VGLUT2-LI was abundant throughout the gray spinal matter, 'radiating' into/from the white matter. A unilateral dorsal rhizotomy reduced VGLUT1-LI, while apparently leaving unaffected the VGLUT2-LI. Transport through axons for both VGLUTs was confirmed by their accumulation after compression of the sciatic nerve or dorsal roots. In the hind paw skin, abundant VGLUT2-IR nerve fibers were observed, sometimes associated with Merkel cells. Lower numbers of VGLUT1-IR fibers were also detected in the skin. Some VGLUT1-IR and VGLUT2-IR fibers were associated with hair follicles. Based on these data and those by Morris et al. [Morris JL, Konig P, Shimizu T, Jobling P, Gibbins IL (2005) Most peptide-containing sensory neurons lack proteins for exocytotic release and vesicular transport of glutamate. J Comp Neurol 483:1-16], we speculate that virtually all DRG neurons in adult mouse express VGLUTs and use glutamate as transmitter.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: