Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 115 papers

Profiling the dead: generating microsatellite data from fossil bones of extinct megafauna--protocols, problems, and prospects.

  • Morten E Allentoft‎ et al.
  • PloS one‎
  • 2011‎

We present the first set of microsatellite markers developed exclusively for an extinct taxon. Microsatellite data have been analysed in thousands of genetic studies on extant species but the technology can be problematic when applied to low copy number (LCN) DNA. It is therefore rarely used on substrates more than a few decades old. Now, with the primers and protocols presented here, microsatellite markers are available to study the extinct New Zealand moa (Aves: Dinornithiformes) and, as with single nucleotide polymorphism (SNP) technology, the markers represent a means by which the field of ancient DNA can (preservation allowing) move on from its reliance on mitochondrial DNA. Candidate markers were identified using high throughput sequencing technology (GS-FLX) on DNA extracted from fossil moa bone and eggshell. From the 'shotgun' reads, >60 primer pairs were designed and tested on DNA from bones of the South Island giant moa (Dinornis robustus). Six polymorphic loci were characterised and used to assess measures of genetic diversity. Because of low template numbers, typical of ancient DNA, allelic dropout was observed in 36-70% of the PCR reactions at each microsatellite marker. However, a comprehensive survey of allelic dropout, combined with supporting quantitative PCR data, allowed us to establish a set of criteria that maximised data fidelity. Finally, we demonstrated the viability of the primers and the protocols, by compiling a full Dinornis microsatellite dataset representing fossils of c. 600-5000 years of age. A multi-locus genotype was obtained from 74 individuals (84% success rate), and the data showed no signs of being compromised by allelic dropout. The methodology presented here provides a framework by which to generate and evaluate microsatellite data from samples of much greater antiquity than attempted before, and opens new opportunities for ancient DNA research.


Two Antarctic penguin genomes reveal insights into their evolutionary history and molecular changes related to the Antarctic environment.

  • Cai Li‎ et al.
  • GigaScience‎
  • 2014‎

Penguins are flightless aquatic birds widely distributed in the Southern Hemisphere. The distinctive morphological and physiological features of penguins allow them to live an aquatic life, and some of them have successfully adapted to the hostile environments in Antarctica. To study the phylogenetic and population history of penguins and the molecular basis of their adaptations to Antarctica, we sequenced the genomes of the two Antarctic dwelling penguin species, the Adélie penguin [Pygoscelis adeliae] and emperor penguin [Aptenodytes forsteri].


The Genomic Footprints of the Fall and Recovery of the Crested Ibis.

  • Shaohong Feng‎ et al.
  • Current biology : CB‎
  • 2019‎

Human-induced environmental change and habitat fragmentation pose major threats to biodiversity and require active conservation efforts to mitigate their consequences. Genetic rescue through translocation and the introduction of variation into imperiled populations has been argued as a powerful means to preserve, or even increase, the genetic diversity and evolutionary potential of endangered species [1-4]. However, factors such as outbreeding depression [5, 6] and a reduction in available genetic diversity render the success of such approaches uncertain. An improved evaluation of the consequence of genetic restoration requires knowledge of temporal changes to genetic diversity before and after the advent of management programs. To provide such information, a growing number of studies have included small numbers of genomic loci extracted from historic and even ancient specimens [7, 8]. We extend this approach to its natural conclusion, by characterizing the complete genomic sequences of modern and historic population samples of the crested ibis (Nipponia nippon), an endangered bird that is perhaps the most successful example of how conservation effort has brought a species back from the brink of extinction. Though its once tiny population has today recovered to >2,000 individuals [9], this process was accompanied by almost half of ancestral loss of genetic variation and high deleterious mutation load. We furthermore show how genetic drift coupled to inbreeding following the population bottleneck has largely purged the ancient polymorphisms from the current population. In conclusion, we demonstrate the unique promise of exploiting genomic information held within museum samples for conservation and ecological research.


Population genomics of grey wolves and wolf-like canids in North America.

  • Mikkel-Holger S Sinding‎ et al.
  • PLoS genetics‎
  • 2018‎

North America is currently home to a number of grey wolf (Canis lupus) and wolf-like canid populations, including the coyote (Canis latrans) and the taxonomically controversial red, Eastern timber and Great Lakes wolves. We explored their population structure and regional gene flow using a dataset of 40 full genome sequences that represent the extant diversity of North American wolves and wolf-like canid populations. This included 15 new genomes (13 North American grey wolves, 1 red wolf and 1 Eastern timber/Great Lakes wolf), ranging from 0.4 to 15x coverage. In addition to providing full genome support for the previously proposed coyote-wolf admixture origin for the taxonomically controversial red, Eastern timber and Great Lakes wolves, the discriminatory power offered by our dataset suggests all North American grey wolves, including the Mexican form, are monophyletic, and thus share a common ancestor to the exclusion of all other wolves. Furthermore, we identify three distinct populations in the high arctic, one being a previously unidentified "Polar wolf" population endemic to Ellesmere Island and Greenland. Genetic diversity analyses reveal particularly high inbreeding and low heterozygosity in these Polar wolves, consistent with long-term isolation from the other North American wolves.


Using metabarcoding to compare the suitability of two blood-feeding leech species for sampling mammalian diversity in North Borneo.

  • Rosie Drinkwater‎ et al.
  • Molecular ecology resources‎
  • 2019‎

The application of high-throughput sequencing (HTS) for metabarcoding of mixed samples offers new opportunities in conservation biology. Recently, the successful detection of prey DNA from the guts of leeches has raised the possibility that these, and other blood-feeding invertebrates, might serve as useful samplers of mammals. Yet little is known about whether sympatric leech species differ in their feeding preferences, and whether this has a bearing on their relative suitability for monitoring local mammalian diversity. To address these questions, we collected spatially matched samples of two congeneric leech species Haemadipsa picta and Haemadipsa sumatrana from lowland rainforest in Borneo. For each species, we pooled ~500 leeches into batches of 10 individuals, performed PCR to target a section of the mammalian 16S rRNA locus and undertook sequencing of amplicon libraries using an Illumina MiSeq. In total, we identified sequences from 14 mammalian genera, spanning nine families and five orders. We found greater numbers of detections, and higher diversity of OTUs, in H. picta compared with H. sumatrana, with rodents only present in the former leech species. However, comparison of samples from across the landscape revealed no significant difference in mammal community composition between the leech species. We therefore suggest that H. picta is the more suitable iDNA sampler in this degraded Bornean forest. We conclude that the choice of invertebrate sampler can influence the detectability of different mammal groups and that this should be accounted for when designing iDNA studies.


Pulling out the 1%: whole-genome capture for the targeted enrichment of ancient DNA sequencing libraries.

  • Meredith L Carpenter‎ et al.
  • American journal of human genetics‎
  • 2013‎

Most ancient specimens contain very low levels of endogenous DNA, precluding the shotgun sequencing of many interesting samples because of cost. Ancient DNA (aDNA) libraries often contain <1% endogenous DNA, with the majority of sequencing capacity taken up by environmental DNA. Here we present a capture-based method for enriching the endogenous component of aDNA sequencing libraries. By using biotinylated RNA baits transcribed from genomic DNA libraries, we are able to capture DNA fragments from across the human genome. We demonstrate this method on libraries created from four Iron Age and Bronze Age human teeth from Bulgaria, as well as bone samples from seven Peruvian mummies and a Bronze Age hair sample from Denmark. Prior to capture, shotgun sequencing of these libraries yielded an average of 1.2% of reads mapping to the human genome (including duplicates). After capture, this fraction increased substantially, with up to 59% of reads mapped to human and enrichment ranging from 6- to 159-fold. Furthermore, we maintained coverage of the majority of regions sequenced in the precapture library. Intersection with the 1000 Genomes Project reference panel yielded an average of 50,723 SNPs (range 3,062-147,243) for the postcapture libraries sequenced with 1 million reads, compared with 13,280 SNPs (range 217-73,266) for the precapture libraries, increasing resolution in population genetic analyses. Our whole-genome capture approach makes it less costly to sequence aDNA from specimens containing very low levels of endogenous DNA, enabling the analysis of larger numbers of samples.


Draft genome of the fungus-growing termite pathogenic fungus Ophiocordyceps bispora (Ophiocordycipitaceae, Hypocreales, Ascomycota).

  • Benjamin H Conlon‎ et al.
  • Data in brief‎
  • 2017‎

This article documents the public availability of genome sequence data and assembled contigs representing the partial draft genome of Ophiocordyceps bispora. As one of the few known pathogens of fungus-farming termites, a draft genome of O. bispora represents the opportunity to further the understanding of disease and resistance in these complex termite societies. With the ongoing attempts to resolve the taxonomy of the Hypocralaean family, more genetic data will also help to shed light on the phylogenetic relationship between sexual and asexual life stages. Next generation sequence data is available from the European Nucleotide Archive (ENA) under accession PRJEB13655; run numbers: ERR1368522, ERR1368523, and ERR1368524. Genome assembly available from ENA under accession numbers: FKNF01000001-FKNF01000302. Gene prediction available as protein fasta, nucleotide fasta and GFF file from Mendeley Data with accession doi:10.17632/r99fd6g3s4.2 (http://dx.doi.org/10.17632/r99fd6g3s4.2).


Genome-wide Ancestry and Demographic History of African-Descendant Maroon Communities from French Guiana and Suriname.

  • Cesar Fortes-Lima‎ et al.
  • American journal of human genetics‎
  • 2017‎

The transatlantic slave trade was the largest forced migration in world history. However, the origins of the enslaved Africans and their admixture dynamics remain unclear. To investigate the demographic history of African-descendant Marron populations, we generated genome-wide data (4.3 million markers) from 107 individuals from three African-descendant populations in South America, as well as 124 individuals from six west African populations. Throughout the Americas, thousands of enslaved Africans managed to escape captivity and establish lasting communities, such as the Noir Marron. We find that this population has the highest proportion of African ancestry (∼98%) of any African-descendant population analyzed to date, presumably because of centuries of genetic isolation. By contrast, African-descendant populations in Brazil and Colombia harbor substantially more European and Native American ancestry as a result of their complex admixture histories. Using ancestry tract-length analysis, we detect different dates for the European admixture events in the African-Colombian (1749 CE; confidence interval [CI]: 1737-1764) and African-Brazilian (1796 CE; CI: 1789-1804) populations in our dataset, consistent with the historically attested earlier influx of Africans into Colombia. Furthermore, we find evidence for sex-specific admixture patterns, resulting from predominantly European paternal gene flow. Finally, we detect strong genetic links between the African-descendant populations and specific source populations in Africa on the basis of haplotype sharing patterns. Although the Noir Marron and African-Colombians show stronger affinities with African populations from the Bight of Benin and the Gold Coast, the African-Brazilian population from Rio de Janeiro has greater genetic affinity with Bantu-speaking populations from the Bight of Biafra and west central Africa.


Application and comparison of large-scale solution-based DNA capture-enrichment methods on ancient DNA.

  • María C Avila-Arcos‎ et al.
  • Scientific reports‎
  • 2011‎

The development of second-generation sequencing technologies has greatly benefitted the field of ancient DNA (aDNA). Its application can be further exploited by the use of targeted capture-enrichment methods to overcome restrictions posed by low endogenous and contaminating DNA in ancient samples. We tested the performance of Agilent's SureSelect and Mycroarray's MySelect in-solution capture systems on Illumina sequencing libraries built from ancient maize to identify key factors influencing aDNA capture experiments. High levels of clonality as well as the presence of multiple-copy sequences in the capture targets led to biases in the data regardless of the capture method. Neither method consistently outperformed the other in terms of average target enrichment, and no obvious difference was observed either when two tiling designs were compared. In addition to demonstrating the plausibility of capturing aDNA from ancient plant material, our results also enable us to provide useful recommendations for those planning targeted-sequencing on aDNA.


Historical mammal extinction on Christmas Island (Indian Ocean) correlates with introduced infectious disease.

  • Kelly B Wyatt‎ et al.
  • PloS one‎
  • 2008‎

It is now widely accepted that novel infectious disease can be a leading cause of serious population decline and even outright extinction in some invertebrate and vertebrate groups (e.g., amphibians). In the case of mammals, however, there are still no well-corroborated instances of such diseases having caused or significantly contributed to the complete collapse of species. A case in point is the extinction of the endemic Christmas Island rat (Rattus macleari): although it has been argued that its disappearance ca. AD 1900 may have been partly or wholly caused by a pathogenic trypanosome carried by fleas hosted on recently-introduced black rats (Rattus rattus), no decisive evidence for this scenario has ever been adduced. Using ancient DNA methods on samples from museum specimens of these rodents collected during the extinction window (AD 1888-1908), we were able to resolve unambiguously sequence evidence of murid trypanosomes in both endemic and invasive rats. Importantly, endemic rats collected prior to the introduction of black rats were devoid of trypanosome signal. Hybridization between endemic and black rats was also previously hypothesized, but we found no evidence of this in examined specimens, and conclude that hybridization cannot account for the disappearance of the endemic species. This is the first molecular evidence for a pathogen emerging in a naïve mammal species immediately prior to its final collapse.


Complete mitochondrial genomes of living and extinct pigeons revise the timing of the columbiform radiation.

  • André E R Soares‎ et al.
  • BMC evolutionary biology‎
  • 2016‎

Pigeons and doves (Columbiformes) are one of the oldest and most diverse extant lineages of birds. However, the nature and timing of the group's evolutionary radiation remains poorly resolved, despite recent advances in DNA sequencing and assembly and the growing database of pigeon mitochondrial genomes. One challenge has been to generate comparative data from the large number of extinct pigeon lineages, some of which are morphologically unique and therefore difficult to place in a phylogenetic context.


The evolutionary history of extinct and living lions.

  • Marc de Manuel‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2020‎

Lions are one of the world's most iconic megafauna, yet little is known about their temporal and spatial demographic history and population differentiation. We analyzed a genomic dataset of 20 specimens: two ca. 30,000-y-old cave lions (Panthera leo spelaea), 12 historic lions (Panthera leo leo/Panthera leo melanochaita) that lived between the 15th and 20th centuries outside the current geographic distribution of lions, and 6 present-day lions from Africa and India. We found that cave and modern lions shared an ancestor ca. 500,000 y ago and that the 2 lineages likely did not hybridize following their divergence. Within modern lions, we found 2 main lineages that diverged ca. 70,000 y ago, with clear evidence of subsequent gene flow. Our data also reveal a nearly complete absence of genetic diversity within Indian lions, probably due to well-documented extremely low effective population sizes in the recent past. Our results contribute toward the understanding of the evolutionary history of lions and complement conservation efforts to protect the diversity of this vulnerable species.


Ancient DNA suggests modern wolves trace their origin to a Late Pleistocene expansion from Beringia.

  • Liisa Loog‎ et al.
  • Molecular ecology‎
  • 2020‎

Grey wolves (Canis lupus) are one of the few large terrestrial carnivores that have maintained a wide geographical distribution across the Northern Hemisphere throughout the Pleistocene and Holocene. Recent genetic studies have suggested that, despite this continuous presence, major demographic changes occurred in wolf populations between the Late Pleistocene and early Holocene, and that extant wolves trace their ancestry to a single Late Pleistocene population. Both the geographical origin of this ancestral population and how it became widespread remain unknown. Here, we used a spatially and temporally explicit modelling framework to analyse a data set of 90 modern and 45 ancient mitochondrial wolf genomes from across the Northern Hemisphere, spanning the last 50,000 years. Our results suggest that contemporary wolf populations trace their ancestry to an expansion from Beringia at the end of the Last Glacial Maximum, and that this process was most likely driven by Late Pleistocene ecological fluctuations that occurred across the Northern Hemisphere. This study provides direct ancient genetic evidence that long-range migration has played an important role in the population history of a large carnivore, and provides insight into how wolves survived the wave of megafaunal extinctions at the end of the last glaciation. Moreover, because Late Pleistocene grey wolves were the likely source from which all modern dogs trace their origins, the demographic history described in this study has fundamental implications for understanding the geographical origin of the dog.


Pre-extinction Demographic Stability and Genomic Signatures of Adaptation in the Woolly Rhinoceros.

  • Edana Lord‎ et al.
  • Current biology : CB‎
  • 2020‎

Ancient DNA has significantly improved our understanding of the evolution and population history of extinct megafauna. However, few studies have used complete ancient genomes to examine species responses to climate change prior to extinction. The woolly rhinoceros (Coelodonta antiquitatis) was a cold-adapted megaherbivore widely distributed across northern Eurasia during the Late Pleistocene and became extinct approximately 14 thousand years before present (ka BP). While humans and climate change have been proposed as potential causes of extinction [1-3], knowledge is limited on how the woolly rhinoceros was impacted by human arrival and climatic fluctuations [2]. Here, we use one complete nuclear genome and 14 mitogenomes to investigate the demographic history of woolly rhinoceros leading up to its extinction. Unlike other northern megafauna, the effective population size of woolly rhinoceros likely increased at 29.7 ka BP and subsequently remained stable until close to the species' extinction. Analysis of the nuclear genome from a ∼18.5-ka-old specimen did not indicate any increased inbreeding or reduced genetic diversity, suggesting that the population size remained steady for more than 13 ka following the arrival of humans [4]. The population contraction leading to extinction of the woolly rhinoceros may have thus been sudden and mostly driven by rapid warming in the Bølling-Allerød interstadial. Furthermore, we identify woolly rhinoceros-specific adaptations to arctic climate, similar to those of the woolly mammoth. This study highlights how species respond differently to climatic fluctuations and further illustrates the potential of palaeogenomics to study the evolutionary history of extinct species.


A draft genome sequence of the elusive giant squid, Architeuthis dux.

  • Rute R da Fonseca‎ et al.
  • GigaScience‎
  • 2020‎

The giant squid (Architeuthis dux; Steenstrup, 1857) is an enigmatic giant mollusc with a circumglobal distribution in the deep ocean, except in the high Arctic and Antarctic waters. The elusiveness of the species makes it difficult to study. Thus, having a genome assembled for this deep-sea-dwelling species will allow several pending evolutionary questions to be unlocked.


GC bias affects genomic and metagenomic reconstructions, underrepresenting GC-poor organisms.

  • Patrick Denis Browne‎ et al.
  • GigaScience‎
  • 2020‎

Metagenomic sequencing is a well-established tool in the modern biosciences. While it promises unparalleled insights into the genetic content of the biological samples studied, conclusions drawn are at risk from biases inherent to the DNA sequencing methods, including inaccurate abundance estimates as a function of genomic guanine-cytosine (GC) contents.


The potential of aquatic bloodfeeding and nonbloodfeeding leeches as a tool for iDNA characterisation.

  • Christina Lynggaard‎ et al.
  • Molecular ecology resources‎
  • 2022‎

Leeches play important roles in food webs due to their abundance, diversity and feeding habits. Studies using invertebrate-derived DNA (iDNA) extracted from leech gut contents to target vertebrate DNA have focused on the Indo-Pacific region and mainly leveraged the leech family Haemadipsidae, composed of bloodfeeding terrestrial leeches, while predatory, fluid/tissue-feeding and aquatic bloodfeeding species have been largely disregarded. While there is some general knowledge regarding the taxonomic groups that leeches prefer to feed on, detailed taxonomic resolution is missing and, therefore, their potential use for monitoring animals is unknown. In this study, 116 leeches from 12 species (six families) and spanning the three feeding habits were collected in Mexico and Canada. We used DNA metabarcoding to investigate their diet and assess their potential use for biodiversity monitoring. We detected vertebrates from five orders including fish, turtles and birds in the diet of aquatic bloodfeeding leeches; eight invertebrate orders of annelids, arthropods and molluscs in leeches that feed on body fluids and tissues; and 10 orders of invertebrates belonging to Arthropoda and Annelida, as well as one vertebrate and one parasitic nematode, in predatory leeches. These results show the potential use of iDNA from aquatic bloodfeeding leeches for retrieving vertebrate taxa, and from predatory and fluid-feeding leeches for invertebrates. Our study provides information about the dietary range of freshwater leeches and one terrestrial leech and contributes proof-of-concept for the use of these leeches for animal monitoring, expanding our knowledge of the use of iDNA from leech gut contents to North America.


The germline mutational process in rhesus macaque and its implications for phylogenetic dating.

  • Lucie A Bergeron‎ et al.
  • GigaScience‎
  • 2021‎

Understanding the rate and pattern of germline mutations is of fundamental importance for understanding evolutionary processes.


Early Pleistocene enamel proteome from Dmanisi resolves Stephanorhinus phylogeny.

  • Enrico Cappellini‎ et al.
  • Nature‎
  • 2019‎

The sequencing of ancient DNA has enabled the reconstruction of speciation, migration and admixture events for extinct taxa1. However, the irreversible post-mortem degradation2 of ancient DNA has so far limited its recovery-outside permafrost areas-to specimens that are not older than approximately 0.5 million years (Myr)3. By contrast, tandem mass spectrometry has enabled the sequencing of approximately 1.5-Myr-old collagen type I4, and suggested the presence of protein residues in fossils of the Cretaceous period5-although with limited phylogenetic use6. In the absence of molecular evidence, the speciation of several extinct species of the Early and Middle Pleistocene epoch remains contentious. Here we address the phylogenetic relationships of the Eurasian Rhinocerotidae of the Pleistocene epoch7-9, using the proteome of dental enamel from a Stephanorhinus tooth that is approximately 1.77-Myr old, recovered from the archaeological site of Dmanisi (South Caucasus, Georgia)10. Molecular phylogenetic analyses place this Stephanorhinus as a sister group to the clade formed by the woolly rhinoceros (Coelodonta antiquitatis) and Merck's rhinoceros (Stephanorhinus kirchbergensis). We show that Coelodonta evolved from an early Stephanorhinus lineage, and that this latter genus includes at least two distinct evolutionary lines. The genus Stephanorhinus is therefore currently paraphyletic, and its systematic revision is needed. We demonstrate that sequencing the proteome of Early Pleistocene dental enamel overcomes the limitations of phylogenetic inference based on ancient collagen or DNA. Our approach also provides additional information about the sex and taxonomic assignment of other specimens from Dmanisi. Our findings reveal that proteomic investigation of ancient dental enamel-which is the hardest tissue in vertebrates11, and is highly abundant in the fossil record-can push the reconstruction of molecular evolution further back into the Early Pleistocene epoch, beyond the currently known limits of ancient DNA preservation.


Molecular parallelisms between pigmentation in the avian iris and the integument of ectothermic vertebrates.

  • Pedro Andrade‎ et al.
  • PLoS genetics‎
  • 2021‎

Birds exhibit striking variation in eye color that arises from interactions between specialized pigment cells named chromatophores. The types of chromatophores present in the avian iris are lacking from the integument of birds or mammals, but are remarkably similar to those found in the skin of ectothermic vertebrates. To investigate molecular mechanisms associated with eye coloration in birds, we took advantage of a Mendelian mutation found in domestic pigeons that alters the deposition of yellow pterin pigments in the iris. Using a combination of genome-wide association analysis and linkage information in pedigrees, we mapped variation in eye coloration in pigeons to a small genomic region of ~8.5kb. This interval contained a single gene, SLC2A11B, which has been previously implicated in skin pigmentation and chromatophore differentiation in fish. Loss of yellow pigmentation is likely caused by a point mutation that introduces a premature STOP codon and leads to lower expression of SLC2A11B through nonsense-mediated mRNA decay. There were no substantial changes in overall gene expression profiles between both iris types as well as in genes directly associated with pterin metabolism and/or chromatophore differentiation. Our findings demonstrate that SLC2A11B is required for the expression of pterin-based pigmentation in the avian iris. They further highlight common molecular mechanisms underlying the production of coloration in the iris of birds and skin of ectothermic vertebrates.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: