Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Histamine H1-receptor-mediated increase in the Ca2+ transient without a change in the Ca2+ current in electrically stimulated guinea-pig atrial myocytes.

  • K Yoshimoto‎ et al.
  • British journal of pharmacology‎
  • 1998‎

The effects of histamine on the intracellular Ca2+ concentration ([Ca2+]i), action potential and membrane currents were assessed in single atrial myocytes prepared from guinea-pigs. Histamine caused a concentration-dependent increase in the [Ca2+]i transient in indol/AM loaded myocytes when stimulated electrically at 0.5 Hz. However, the maximum increase in [Ca2+]i transient produced by histamine was less than 50% of that elicited by isoprenaline. The histamine-induced increase in [Ca2+]i transient was significantly inhibited by chlorpheniramine, but not by cimetidine. Pretreatment with nifedipine nearly completely suppressed the histamine-induced increase in [Ca2+]i transient. Cyclopiazonic acid did not affect the histamine response. In the whole-cell current-clamp mode of the patch-clamp method, both histamine and isoprenaline prolonged action potential duration (APD) in atrial myocytes. In the presence of Co2+ or nifedipine, the isoprenaline-induced APD prolongation was abolished and an APD shortening effect was manifested, while histamine still increased APD. The APD prolongation elicited by histamine was reversed by chlorpheniramine. In the voltage-clamp mode, the histamine-sensitive membrane current was inwardly rectifying and reversed close to the calculated value of the K+ equilibrium potential. Histamine had no apparent effect on L-type Ca2+ current, in contrast to the pronounced effect of isoprenaline. These results indicate that in guinea-pig atrial myocytes stimulation of H1-receptors with histamine does not directly activate Ca2+ channels but causes an elevation of [Ca2+]i transient by increasing Ca2+ influx through the channels during the prolonged repolarization of action potentials resulting from inhibition of the outward K+ current.


Functional and morphological damage of endothelium in rabbit ear artery following irradiation with cobalt60.

  • F Qi‎ et al.
  • British journal of pharmacology‎
  • 1998‎

1. The relaxant actions of acetylcholine and A23187 were examined in the rabbit central ear artery at different intervals following exposure to different doses of radiation with a cobalt60 unit. The artery was irradiated with a dose of 10 Gy, 20 Gy and 45 Gy. Radiation caused dose- and time-dependent impairment of the endothelium-dependent relaxations. The impaired endothelium-dependent relaxations occurred as early as 1 week postirradiation and persisted throughout the experimental period (10 weeks). 2. The endothelium-independent response to sodium nitroprusside was well preserved up to 6 weeks after irradiation. The contractile response to noradrenaline was unaltered by irradiation throughout the experimental period, but in contrast to control vessels, an increase in the sensitivity to noradrenaline in the presence of the nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine was not observed in the irradiated vessels. 3. The impaired endothelium-dependent relaxations in the irradiated vessels were not improved by pretreatment with the NOS substrate L-arginine, the cyclo-oxygenase inhibitor indomethacin or the free radical scavengers superoxide dismutase and catalase. 4. Scanning electron microscopy indicated morphologically intact endothelial cells within the first 4 weeks after irradiation. 5. Western blot analysis showed a significant decrease in the expression of endothelial NOS (eNOS) in the irradiated vessels. 6. These data indicate that endothelial cell function is specifically impaired in the irradiated vessels before morphological endothelial cell damage can be detected. This impairment may be related to diminished eNOS expression.


Ink4a and Arf are crucial factors in the determination of the cell of origin and the therapeutic sensitivity of Myc-induced mouse lymphoid tumor.

  • E Sugihara‎ et al.
  • Oncogene‎
  • 2012‎

The cell of origin of tumors and the factors determining the cell of origin remain unclear. In this study, a mouse model of precursor B acute lymphoblastic leukemia/lymphoma (pre-B ALL/LBL) was established by retroviral transduction of Myc genes (N-Myc or c-Myc) into mouse bone marrow cells. Hematopoietic stem cells (HSCs) exhibited the highest susceptibility to N-Myc-induced pre-B ALL/LBL versus lymphoid progenitors, myeloid progenitors and committed progenitor B cells. N-Myc was able to induce pre-B ALL/LBL directly from progenitor B cells in the absence of Ink4a and Arf. Arf was expressed higher in progenitor B cells than Ink4a. In addition, N-Myc induced pre-B ALL/LBL from Arf(-/-) progenitor B cells suggesting that Arf has a predominant role in determining the cell of origin of pre-B ALL/LBL. Tumor cells derived from Ink4a/Arf(-/-) progenitor B cells exhibited a higher rate of proliferation and were more chemoresistant than those derived from wild-type HSCs. Furthermore, the Mdm2 inhibitor Nutlin-3 restored p53 and induced massive apoptosis in mouse pre-B ALL/LBL cells derived from Ink4a/Arf(-/-) cells and human B-ALL cell lines lacking Ink4a and Arf expression, suggesting that Mdm2 inhibition may be a novel therapeutic approach to the treatment of Ink4a/Arf(-/-) B-ALL/LBL, such as is frequently found in Ph(+) ALL and relapsed ALL. Collectively, these findings indicate that Ink4a and Arf are critical determining factors of the cell of origin and the therapeutic sensitivity of Myc-induced lymphoid tumors.


mel-18 negatively regulates cell cycle progression upon B cell antigen receptor stimulation through a cascade leading to c-myc/cdc25.

  • O Tetsu‎ et al.
  • Immunity‎
  • 1998‎

mel-18 is a mammalian Polycomb group gene encoding a transcriptional repressor with tumor suppressive activity. Overexpression of mel-18 in mice results in cell cycle arrest of B cells upon B cell receptor stimulation with downregulation of c-myc. This phenotype is rescued in mel-18/c-myc double-transgenic mice, suggesting that c-myc locates downstream of mel-18. In mel-18 transgenic mice, the downregulation of cyclins D2 and E; CDK4, -6, and -7; and CDC25A causes the impairment in the activities of cyclin-dependent kinases, resulting in hypophosphorylation of the retinoblastoma protein. In contrast, the upregulation of c-Myc, CDC25, and CDC2/CDK2 kinase activities results in the augmentation of B cell proliferation in mel-18-deficient mice. We therefore propose that mel-18 negatively regulates the cell cycle through a c-myc/cdc25 cascade.


Tyrosine phosphorylation as a convergent pathway of heterotrimeric G protein- and rho protein-mediated Ca2+ sensitization of smooth muscle of rabbit mesenteric artery.

  • M Sasaki‎ et al.
  • British journal of pharmacology‎
  • 1998‎

1. The aim of this study was to determine whether different signal transduction mechanisms underlie the Ca2+ sensitizing effects of guanosine 5'-O-(3-thiotriphosphate) (GTP(gamma)S) and receptor agonists on beta-escin-skinned smooth muscle of rabbit mesenteric artery. 2. In the homogenate of the beta-escin-skinned arterial strip, C3 exoenzyme of Clostridium botulinum catalyzed the [32P]-ADP-ribosylation of only one protein that had the same molecular mass as the protein detected in Western blots with anti-rho p21 antibody. Pretreatment of preparations with C3 resulted in great inhibition of GTP(gamma)S-induced Ca2+ sensitization, although the effect of GTP(gamma)S at higher concentrations (> or = 30 microM) was not completely blocked by this treatment. In contrast, the enhancement by phenylephrine and histamine, in the presence of guanosine 5'-triphosphate, of the Ca2+-induced contraction was not affected by C3 pretreatment. 3. The protein kinase C (PKC) inhibitors calphostin C and staurosporine completely eliminated the enhancement by phorbol ester 12,13-dibutyrate of the Ca2+-induced contraction. However, these PKC inhibitors had no effect on GTP(gamma)S- and receptor agonist-induced Ca2+ sensitization. 4. The tyrosine kinase inhibitors genistein and tyrphostin 25 caused an irreversible and complete block of the enhancement by GTP(gamma)S of the Ca2+-induced contraction without affecting this Ca2+ contraction. The inactive genistein analogue daidzein did not modify the effect of GTP(gamma)S. The Ca2+ sensitizing effects of phenylephrine and histamine were also blocked by these tyrosine kinase inhibitors. 5. These results suggest that rho p21 predominantly mediates GTP(gamma)S-induced Ca2+ sensitization of beta-escin-skinned smooth muscle of rabbit mesenteric artery, while the Ca2+ sensitizing actions of heterotrimeric G protein-coupled receptor agonists do not involve this small G protein. However, it seems that tyrosine phosphorylation, but not PKC activation, plays an important role in both of the rho p21 protein- and heterotrimeric G protein-mediated Ca2+ sensitization mechanisms.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: