Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 4 papers out of 4 papers

Critical contribution of OX40 ligand to T helper cell type 2 differentiation in experimental leishmaniasis.

  • H Akiba‎ et al.
  • The Journal of experimental medicine‎
  • 2000‎

Infection of inbred mouse strains with Leishmania major is a well characterized model for analysis of T helper (Th)1 and Th2 cell development in vivo. In this study, to address the role of costimulatory molecules CD27, CD30, 4-1BB, and OX40, which belong to the tumor necrosis factor receptor superfamily, in the development of Th1 and Th2 cells in vivo, we administered monoclonal antibody (mAb) against their ligands, CD70, CD30 ligand (L), 4-1BBL, and OX40L, to mice infected with L. major. Whereas anti-CD70, anti-CD30L, and anti-4-1BBL mAb exhibited no effect in either susceptible BALB/c or resistant C57BL/6 mice, the administration of anti-OX40L mAb abrogated progressive disease in BALB/c mice. Flow cytometric analysis indicated that OX40 was expressed on CD4(+) T cells and OX40L was expressed on CD11c(+) dendritic cells in the popliteal lymph nodes of L. major-infected BALB/c mice. In vitro stimulation of these CD4(+) T cells showed that anti-OX40L mAb treatment resulted in substantially reduced production of Th2 cytokines. Moreover, this change in cytokine levels was associated with reduced levels of anti-L. major immunoglobulin (Ig)G1 and serum IgE. These results indicate that anti-OX40L mAb abrogated progressive leishmaniasis in BALB/c mice by suppressing the development of Th2 responses, substantiating a critical role of OX40-OX40L interaction in Th2 development in vivo.


Effect of pirenzepine on gastric endocrine cell kinetics during lansoprazole administration.

  • N Omura‎ et al.
  • Journal of gastroenterology‎
  • 1998‎

We studied the effect of pirenzepine on gastric secretion kinetics in rats in a hypochlorhydric state induced by lansoprazole, a proton pump inhibitor. Pirenzepine was administered intramuscularly at a dosage of 20 mg/kg twice daily; and lansorprazole, subcutaneously at 50 mg/kg once daily, both every day for 4 weeks. After the 4-week treatment, serum gastrin and plasma somatostatin levels were determined by radioimmunoassay. In addition, gastrin cells, somatostatin cells, and enterochromaffin-like cells were immunostained and counted. Serum gastrin levels were elevated, and gastrin and enterochromaffin-like cell numbers increased in the group on lansoprazole alone, compared with these values in the control group (which received distilled water). In the group on the lansoprazole and pirenzepine combination, serum gastrin levels decreased, and gastrin and enterochromaffin-like cell numbers were significantly decreased, compared with the respective variables in the group on lansoprazole alone, while the number of somatostatin cells increased in the group on the combination. Plasma somatostatin levels did not vary significantly in any group. It was thus demonstrated that pirenzepine corrects the abnormal gastric secretion kinetics resulting from treatment with lansoprazole alone, such as hypergastrinemia and gastrin and enterochromaffin-like cell hyperplasia.


Afadin: A novel actin filament-binding protein with one PDZ domain localized at cadherin-based cell-to-cell adherens junction.

  • K Mandai‎ et al.
  • The Journal of cell biology‎
  • 1997‎

A novel actin filament (F-actin)-binding protein with a molecular mass of approximately 205 kD (p205), which was concentrated at cadherin-based cell-to-cell adherens junction (AJ), was isolated and characterized. p205 was purified from rat brain and its cDNA was cloned from a rat brain cDNA library. p205 was a protein of 1,829 amino acids (aa) with a calculated molecular mass of 207,667 kD. p205 had one F-actin-binding domain at 1,631-1,829 aa residues and one PDZ domain at 1,016- 1,100 aa residues, a domain known to interact with transmembrane proteins. p205 was copurified from rat brain with another protein with a molecular mass of 190 kD (p190). p190 was a protein of 1,663 aa with a calculated molecular mass of 188,971 kD. p190 was a splicing variant of p205 having one PDZ domain at 1,009-1,093 aa residues but lacking the F-actin-binding domain. Homology search analysis revealed that the aa sequence of p190 showed 90% identity over the entire sequence with the product of the AF-6 gene, which was found to be fused to the ALL-1 gene, known to be involved in acute leukemia. p190 is likely to be a rat counterpart of human AF-6 protein. p205 bound along the sides of F-actin but hardly showed the F-actin-cross-linking activity. Northern and Western blot analyses showed that p205 was ubiquitously expressed in all the rat tissues examined, whereas p190 was specifically expressed in brain. Immunofluorescence and immunoelectron microscopic studies revealed that p205 was concentrated at cadherin-based cell-to-cell AJ of various tissues. We named p205 l-afadin (a large splicing variant of AF-6 protein localized at adherens junction) and p190 s-afadin (a small splicing variant of l-afadin). These results suggest that l-afadin serves as a linker of the actin cytoskeleton to the plasma membrane at cell-to-cell AJ.


Identification of a distinct antibacterial domain within the N-lobe of ovotransferrin.

  • H R Ibrahim‎ et al.
  • Biochimica et biophysica acta‎
  • 1998‎

We have evaluated the bactericidal activity of hen ovotransferrin (OTf), which was found to operate regardless of its iron-deprivation properties, with the objective of isolating the bactericidal domain. The amino-terminal half-molecule (N-lobe, residues 1-332) of OTf, isolated by trypsin-nicking, retained the bactericidal activity independently of iron-deprivation, but not the carboxyl-terminal half-molecule (C-lobe, residue 342-686), suggesting the presence of a bactericidal domain within the N-lobe of the molecule. Specific cleavage at the aspartyl residues of OTf, by diluted-acid procedure, yielded fairly large peptides, whereas proteolysis for 150 min produced the strongest bactericidal peptides mixture. The bactericidal domain was purified from the active hydrolysate by gel filtration and reversed-phase HPLC and showed activity against S. aureus as well as E. coli K-12. Electrophoretic analysis on tricine-SDS-PAGE revealed a bactericidal peptide with an average M(r) of 9900 Da under non-reducing conditions. In combination with the specificity of cleavage (Asp-X) and the molecular mass, its N-terminal microsequencing corresponded to a cationic peptide consisting of 92 residues located within the 109-200 sequence of the N-lobe of OTf, containing three intrachain disulfide bridges, featuring a common structural motif occurs in the N-lobes of transferrins for which the sequence is available. Two of the disulfides (C160-C174 and C171-C182) form surface exposed cringle bridges lying on the opposite side of the iron-binding site from the interdomain cleft and showing marked sequence homology to insect defensins, which are blockers of the voltage-dependent K+ channels. The peptide lost antibacterial activity when its disulfide bonds were reduced, indicating the importance of its tertiary structure for the exertion of antibiotic activity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: