Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 157 papers

Pharmacological postconditioning with lactic acid and hydrogen rich saline alleviates myocardial reperfusion injury in rats.

  • Guoming Zhang‎ et al.
  • Scientific reports‎
  • 2015‎

This study investigated whether pharmacological postconditioning with lactic acid and hydrogen rich saline can provide benefits similar to that of mechanical postconditioning. To our knowledge, this is the first therapeutic study to investigate the co-administration of lactic acid and hydrogen. SD rats were randomly divided into 6 groups: Sham, R/I, M-Post, Lac, Hyd, and Lac + Hyd. The left coronary artery was occluded for 45 min. Blood was withdrawn from the right atrium to measure pH. The rats were sacrificed at different time points to measure mitochondrial absorbance, infarct size, serum markers and apoptotic index. Rats in Lac + Hyd group had similar blood pH and ROS levels when compared to the M-Post group. Additionally, the infarct area was reduced to the same extent in Lac + Hyd and M-Post groups with a similar trends observed for serum markers of myocardial injury and apoptotic index. Although the level of P-ERK in Lac + Hyd group was lower, P-p38/JNK, TNFα, Caspase-8, mitochondrial absorbance and Cyt-c were all similar in Lac + Hyd and M-Post groups. The Lac and Hyd groups were able to partially mimic this protective role. These data suggested that pharmacological postconditioning with lactic acid and hydrogen rich saline nearly replicates the benefits of mechanical postconditioning.


Fine mapping links the FTa1 flowering time regulator to the dominant spring1 locus in Medicago.

  • Chin Chin Yeoh‎ et al.
  • PloS one‎
  • 2013‎

To extend our understanding of flowering time control in eudicots, we screened for mutants in the model legume Medicago truncatula (Medicago). We identified an early flowering mutant, spring1, in a T-DNA mutant screen, but spring1 was not tagged and was deemed a somaclonal mutant. We backcrossed the mutant to wild type R108. The F1 plants and the majority of F2 plants were early flowering like spring1, strongly indicating that spring1 conferred monogenic, dominant early flowering. We hypothesized that the spring1 phenotype resulted from over expression of an activator of flowering. Previously, a major QTL for flowering time in different Medicago accessions was located to an interval on chromosome 7 with six candidate flowering-time activators, including a CONSTANS gene, MtCO, and three FLOWERING LOCUS T (FT) genes. Hence we embarked upon linkage mapping using 29 markers from the MtCO/FT region on chromosome 7 on two populations developed by crossing spring1 with Jester. Spring1 mapped to an interval of ∼0.5 Mb on chromosome 7 that excluded MtCO, but contained 78 genes, including the three FT genes. Of these FT genes, only FTa1 was up-regulated in spring1 plants. We then investigated global gene expression in spring1 and R108 by microarray analysis. Overall, they had highly similar gene expression and apart from FTa1, no genes in the mapping interval were differentially expressed. Two MADS transcription factor genes, FRUITFULLb (FULb) and SUPPRESSOR OF OVER EXPRESSION OF CONSTANS1a (SOC1a), that were up-regulated in spring1, were also up-regulated in transgenic Medicago over-expressing FTa1. This suggested that their differential expression in spring1 resulted from the increased abundance of FTa1. A 6255 bp genomic FTa1 fragment, including the complete 5' region, was sequenced, but no changes were observed indicating that the spring1 mutation is not a DNA sequence difference in the FTa1 promoter or introns.


Exposure to Ambient Air Particles Increases the Risk of Mental Disorder: Findings from a Natural Experiment in Beijing.

  • Zhen Jia‎ et al.
  • International journal of environmental research and public health‎
  • 2018‎

Epidemiology studies indicated that air pollution has been associated with adverse neurological effects in human. Moreover, the secretion of glucocorticoid (GC) affects the mood regulation, and the negative feedback of hippocampal glucocorticoid receptors (GR) inhibits the GC secretion. Meanwhile, the over secretion of GC can interfere the immune system and induce neurotoxicity. In the present study, the human test showed that the secretion of the cortisol in plasma was elevated after exposure in heavy air pollution. In the mouse model, we found that breathing the highly polluted air resulted in the negative responses of the mood-related behavioral tests and morphology of hippocampus, as well as the over secretion of GC in plasma, down regulation of GR, and up-regulation of cytokine and chemokine in the hippocampus. When considering the interrelated trends between the hippocampal GR, inflammatory factors, and plasmatic GC, we speculated that PM2.5 exposure could lead to the increased secretion of GC in plasma by decreasing the expression of GR in hippocampus, which activated the inflammation response, and finally induced neurotoxicity, suggesting that PM2.5 exposure negatively affects mood regulation. When combined with the results of the human test, it indicated that exposure to ambient air particles increased the risk of mental disorder.


A Meta-Analysis of Risk Factors for Post-Traumatic Stress Disorder (PTSD) in Adults and Children after Earthquakes.

  • Bihan Tang‎ et al.
  • International journal of environmental research and public health‎
  • 2017‎

PTSD is considered the most common negative psychological reactions among survivors following an earthquake. The present study sought to find out the determinants of PTSD in earthquake survivors using a systematic meta-analysis. Four electronic databases (PubMed, Embase, Web of Science, and PsycInfo) were used to search for observational studies about PTSD following earthquakes. The literature search, study selection, and data extraction were conducted independently by two authors. 52 articles were included in the study. Summary estimates, subgroup analysis, and publication bias tests were performed on the data. The prevalence of PTSD after earthquakes ranged from 4.10% to 67.07% in adults and from 2.50% to 60.00% in children. For adults, the significant predictors were being female, low education level or socio-economic status, prior trauma; being trapped, experiencing fear, injury, or bereavement during the disaster. For children, the significant predictors were being older age, high education level; being trapped, experiencing fear, injury, or bereavement, witnessing injury/death during the earthquakes. Our study provides implications for the understanding of risk factors for PTSD among earthquake survivors. Post-disaster mental health recovery programs that include early identification, on-going monitoring, and sustained psychosocial support are needed for earthquake survivors.


MiRNA-Sequence Indicates That Mesenchymal Stem Cells and Exosomes Have Similar Mechanism to Enhance Cardiac Repair.

  • Lianbo Shao‎ et al.
  • BioMed research international‎
  • 2017‎

Mesenchymal stem cells (MSCs) repair infarcted heart through paracrine mechanism. We sought to compare the effectiveness of MSCs and MSC-derived exosomes (MSC-Exo) in repairing infarcted hearts and to identify how MSC-Exo mediated cardiac repair is regulated. In a rat myocardial infarction model, we found that MSC-Exo inhibited cardiac fibrosis, inflammation, and improved cardiac function. The beneficial effects of MSC-Exo were significantly superior compared to that of MSCs. To explore the potential mechanisms underlying MSC-Exo's effects, we performed several in vitro experiments and miRNA-sequence analysis. MSC-Exo stimulated cardiomyocyte H9C2 cell proliferation, inhibited apoptosis induced by H2O2, and inhibited TGF-β induced transformation of fibroblast cell into myofibroblast. Importantly, novel miRNA sequencing results indicated that MSC-Exo and MSCs have similar miRNA expression profile, which could be one of the reasons that MSC-Exo can replace MSCs for cardiac repair. In addition, the expression of several miRNAs from MSC-Exo was significantly different from that of MSCs, which may explain why MSC-Exo has better therapeutic effect than MSCs. In conclusion, this study demonstrates that MSC-Exo could be used alone to promote cardiac repair and are superior to MSCs in repairing injured myocardium.


[68Ga]Ga-NOTA-MAL-Cys39-exendin-4, a potential GLP-1R targeted PET tracer for the detection of insulinoma.

  • Pengjun Zhang‎ et al.
  • Nuclear medicine and biology‎
  • 2019‎

Glucagon-like peptide-1 receptor (GLP-1R) is a kind of G protein coupled receptor which regulates the insulin secretion and serves as potential target in the diagnosis of functional pancreas neuroendocrine tumor. The aim of this study was to evaluate the feasibility of GLP-1R targeted tracer [68Ga]Ga-NOTA-MAL-Cys39-exendin-4 in the detection of insulinoma.


Overexpression of Medicago MtCDFd1_1 Causes Delayed Flowering in Medicago via Repression of MtFTa1 but Not MtCO-Like Genes.

  • Lulu Zhang‎ et al.
  • Frontiers in plant science‎
  • 2019‎

Optimizing flowering time is crucial for maximizing crop productivity, but gaps remain in the knowledge of the mechanisms underpinning temperate legume flowering. Medicago, like winter annual Arabidopsis, accelerates flowering after exposure to extended cold (vernalization, V) followed by long-day (LD) photoperiods. In Arabidopsis, photoperiodic flowering is triggered through CO, a photoperiodic switch that directly activates the FT gene encoding a mobile florigen and potent activator of flowering. In Arabidopsis, several CYCLING DOF FACTORs (CDFs), including AtCDF1, act redundantly to repress CO and thus FT expression, until their removal in LD by a blue-light-induced F-BOX1/GIGANTEA (FKF1/GI) complex. Medicago possesses a homolog of FT, MtFTa1, which acts as a strong activator of flowering. However, the regulation of MtFTa1 does not appear to involve a CO-like gene. Nevertheless, work in pea suggests that CDFs may still regulate flowering time in temperate legumes. Here, we analyze the function of Medicago MtCDF genes with a focus on MtCDFd1_1 in flowering time and development. MtCDFd1_1 causes strong delays to flowering when overexpressed in Arabidopsis and shows a cyclical diurnal expression in Medicago with peak expression at dawn, consistent with AtCDF genes like AtCDF1. However, MtCDFd1_1 lacks predicted GI or FKF1 binding domains, indicating possible differences in its regulation from AtCDF1. In Arabidopsis, CDFs act in a redundant manner, and the same is likely true of temperate legumes as no flowering time phenotypes were observed when MtCDFd1_1 or other MtCDFs were knocked out in Medicago Tnt1 lines. Nevertheless, overexpression of MtCDFd1_1 in Medicago plants resulted in late flowering relative to wild type in inductive vernalized long-day (VLD) conditions, but not in vernalized short days (VSDs), rendering them day neutral. Expression of MtCO-like genes was not affected in the transgenic lines, but LD-induced genes MtFTa1, MtFTb1, MtFTb2, and MtSOC1a showed reduced expression. Plants carrying both the Mtfta1 mutation and 35S:MtCDFd1_1 flowered no later than the Mtfta1 plants. This indicates that 35S:MtCDFd1_1 likely influences flowering in VLD via repressive effects on MtFTa1 expression. Overall, our study implicates MtCDF genes in photoperiodic regulation in Medicago by working redundantly to repress FT-like genes, particularly MtFTa1, but in a CO-independent manner, indicating differences from the Arabidopsis model.


Investigation on the Alteration of Brain Functional Network and Its Role in the Identification of Mild Cognitive Impairment.

  • Lulu Zhang‎ et al.
  • Frontiers in neuroscience‎
  • 2020‎

Mild cognitive impairment (MCI) is generally regarded as a prodromal stage of Alzheimer's disease (AD). In coping with the challenges caused by AD, we analyzed resting-state functional magnetic resonance imaging data of 82 MCI subjects and 93 normal controls (NCs). The alteration of brain functional network in MCI was investigated on three scales, including global metrics, nodal characteristics, and modular properties. The results supported the existence of small worldness, hubs, and community structure in the brain functional networks of both groups. Compared with NCs, the network altered in MCI over all the three scales. In scale I, we found significantly decreased characteristic path length and increased global efficiency in MCI. Moreover, altered global network metrics were associated with cognitive level evaluated by neuropsychological assessments. In scale II, the nodal betweenness centrality of some global hubs, such as the right Crus II of cerebellar hemisphere (CERCRU2.R) and fusiform gyrus (FFG.R), changed significantly and associated with the severity and cognitive impairment in MCI. In scale III, although anatomically adjacent regions tended to be clustered into the same module regardless of group, discrepancies existed in the composition of modules in both groups, with a prominent separation of the cerebellum and a less localized organization of community structure in MCI compared with NC. Taking advantages of random forest approach, we achieved an accuracy of 91.4% to discriminate MCI patients from NCs by integrating cognitive assessments and network analysis. The importance of the used features fed into the classifier further validated the nodal characteristics of CERCRU2.R and FFG.R could be potential biomarkers in the identification of MCI. In conclusion, the present study demonstrated that the brain functional connectome data altered at the stage of MCI and could assist the automatic diagnosis of MCI patients.


TRIM21-SERPINB5 aids GMPS repression to protect nasopharyngeal carcinoma cells from radiation-induced apoptosis.

  • Panpan Zhang‎ et al.
  • Journal of biomedical science‎
  • 2020‎

The main strategy against nasopharyngeal carcinoma (NPC) is radiotherapy. However, radioresistance mediated recurrence is a leading clinical bottleneck in NPC. Revealing the mechanism of NPC radioresistance will help improve the therapeutic effect.


C-Terminal Amination of a Cationic Anti-Inflammatory Peptide Improves Bioavailability and Inhibitory Activity Against LPS-Induced Inflammation.

  • Lulu Zhang‎ et al.
  • Frontiers in immunology‎
  • 2020‎

Lipopolysaccharide (LPS) has been implicated as a major cause of inflammation and an uncontrolled LPS response increases the risk of localized inflammation and sepsis. While some native peptides are helpful in the treatment of LPS-induced inflammation, the use of these peptides is limited due to their potential cytotoxicity and poor anti-inflammatory activity. Hybridization is an effective approach for overcoming this problem. In this study, a novel hybrid anti-inflammatory peptide that combines the active center of Cathelicidin 2 (CATH2) with thymopentin (TP5) was designed [CTP, CATH2 (1-13)-TP5]. CTP was found to have higher anti-inflammatory effects than its parental peptides through directly LPS neutralization. However, CTP scarcely inhibited the attachment of LPS to cell membranes or suppressed an established LPS-induced inflammation due to poor cellular uptake. The C-terminal amine modification of CTP (CTP-NH2) was then designed based on the hypothesis that C-terminal amidation can enhance the cell uptake by increasing the hydrophobicity of the peptide. Compared with CTP, CTP-NH2 showed enhanced anti-inflammatory activity and lower cytotoxicity. CTP-NH2 not only has strong LPS neutralizing activity, but also can significantly inhibit the LPS attachment and the intracellular inflammatory response. The intracellular anti-inflammatory effect of CTP-NH2 was associated with blocking of LPS binding to the Toll-like receptor 4-myeloid differentiation factor 2 complex and inhibiting the nuclear factor-kappa B pathway. In addition, the anti-inflammatory effect of CTP-NH2 was confirmed using a murine LPS-induced sepsis model. Collectively, these findings suggest that CTP-NH2 could be developed into a novel anti-inflammatory drug. This successful modification provides a design strategy to improve the cellular uptake and anti-inflammatory activity of peptide agents.


Amplitude of Low-Frequency Oscillations in First-Episode Drug-Naive Patients with Major Depressive Disorder: A Resting State Functional Magnetic Resonance Imaging Study.

  • Lulu Zhang‎ et al.
  • Neuropsychiatric disease and treatment‎
  • 2022‎

To observe characteristics of the amplitudes of low-frequency oscillation (LFO) in first-episode drug-naive patients with major depressive disorder (MDD).


Sulphenylation of CypD at Cysteine 104: A Novel Mechanism by Which SO2 Inhibits Cardiomyocyte Apoptosis.

  • Boyang Lv‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2021‎

Objectives: The study was designed to explore the role of endogenous gaseous signaling molecule sulfur dioxide (SO2) in the control of cardiomyocyte apoptosis and its molecular mechanisms. Methods: Neonatal mouse cardiac myocytes (NMCMs) and H9c2 cells were used in the cell experiments. The endogenous SO2 pathway including SO2 level and the expression of SO2-generating enzyme aspartate aminotransferase 1/2 (AAT1/2) were detected in NMCMs. The apoptosis of cardiomyocytes was examined by a TUNEL assay. The cleavage and the activity of apoptotic proteins caspase9 and caspase3 were measured. The content of ATP, the opening of mitochondrial permeability transition pore (mPTP), and the cytochrome c (cytc) leakage were detected by immunofluorescence. The sulphenylation of cyclophilin-D (CypD) was detected by biotin switch analysis. The four CypD mutant plasmids in which cysteine sites were mutated to serine were constructed to identify the SO2-affected site in vitro. Results: ISO down-regulated the endogenous SO2/AAT pathway of cardiomyocytes in association with a significant increase in cardiomyocyte apoptosis, demonstrated by the increases in apoptosis, cleaved-caspase3/caspase3 ratio, and caspase3 activity. Furthermore, ISO significantly reduced ATP production in H9c2 cells, but the supplement of SO2 significantly restored the content of ATP. ISO stimulated mPTP opening, resulting in an increase in the release of cytc, which further increased the ratio of cleaved caspase9/caspase9 and enhanced the protein activity of caspase9. While, the supplementation of SO2 reversed the above effects. Mechanistically, SO2 did not affect CypD protein expression, but sulphenylated CypD and inhibited mPTP opening, resulting in an inhibition of cardiomyocyte apoptosis. The C104S mutation in CypD abolished SO2-induced sulphenylation of CypD, and thereby blocked the inhibitory effect of SO2 on the mPTP opening and cardiomyocyte apoptosis. Conclusion: Endogenous SO2 sulphenylated CypD at Cys104 to inhibit mPTP opening, and thus protected against cardiomyocyte apoptosis.


Association of life-course traumatic brain injury with dementia risk: A nationwide twin study.

  • Lulu Zhang‎ et al.
  • Alzheimer's & dementia : the journal of the Alzheimer's Association‎
  • 2023‎

The impact of life-course traumatic brain injury (TBI) on dementia is unclear.


Pharmacodynamics, Network Pharmacology, and Pharmacokinetics of Chinese Medicine Formula 9002A in the Treatment of Alzheimer's Disease.

  • Chunlan Tang‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Alzheimer's disease (AD) is a common and serious neurodegenerative disease in the elderly; however, the treatment of AD is still lacking of rational drugs. In this paper, the active constituents and targets of the self-developed Chinese medicine Formula 9002A in the treatment of AD were investigated from three aspects: pharmacodynamics based on cell and animal experiments, network pharmacology analysis, and pharmacokinetic analysis. A total of 124 compounds were screened in Formula 9002A, and four constituents including salidroside, gastrodin, niacinamide, and umbelliferone were screened as potential active components for the treatment of AD by network pharmacology. Among them, salidroside and gastrodin showed higher relevance with AD targets, such as ESR1 and AR. The pharmacokinetic study showed that they could be absorbed and identified in plasma; the half-life and mean residence times of salidroside and gastrodin in plasma were nearly increased 2-fold by the administration of Formula 9002A compared with those by the administration of a monomer, indicating the extended action time of active compounds in vivo. Formula 9002A exerted the efficacy in the treatment of AD mainly by regulating APP, GSK3β, ESR1, and AR targets based on the anti-β-amyloid protein deposition, anti-oxidation and anti-apoptosis pathways. Two genes enriched in Alzheimer's disease pathway, APP and GSK3β, were further validated. The experiments also demonstrated that Formula 9002A could downregulate APP and GSK3β protein expression in the model mice brain and improved their cognitive ability. In summary, Formula 9002A has the characteristics of multiple targets and multiple pathways in the treatment of AD, and salidroside and gastrodin might be the main active constituents, which could provide a foundation for further research and application.


Dual-targeting nanozyme for tumor activatable photo-chemodynamic theranostics.

  • Chaoyi Chen‎ et al.
  • Journal of nanobiotechnology‎
  • 2022‎

Tumor phototheranostics holds a great promise on account of its high spatiotemporal resolution, tumor-specificity, and noninvasiveness. However, physical limitation of light penetration and "always on" properties of conventional photothermal-conversion agents usually cause difficulty in accurate diagnosis and completely elimination of tumor. Meanwhile, nanozymes mediated Fenton reactions can well utilize the tumor microenvironment (TME) to generate hydroxyl radicals for chemodynamic therapy (CDT), but limited by the concentration of H2O2 in TME and the delivery efficiency of nanozymes. To overcome these problems, a dual-targeting nanozyme (FTRNPs) is developed for tumor-specific in situ theranostics, based upon the assembling of ultrasmall Fe3O4 nanoparticles, 3,3',5,5'-tetrameth-ylbenzidine (TMB) and the RGD peptide. The FTRNPs after H2O2 treatment exhibits superior photothermal stability and high photothermal conversion efficiency (η = 50.9%). FTRNPs shows extraordinary accumulation and retention in the tumor site by biological/physical dual-targeting, which is 3.54-fold higher than that without active targeting. Cascade-dual-response to TME for nanozymes mediated Fenton reactions and TMB oxidation further improves the accuracy of both photoacoustic imaging and photothermal therapy (PTT). The tumor inhibition rate of photo-chemodynamic therapy is ~ 97.76%, which is ~ 4-fold higher than that of PTT or CDT only. Thus, the combination of CDT and PTT to construct "turn on" nanoplatform is of great significance to overcome their respective limitations. Considering its optimized "all-in-one" performance, this new nanoplatform is expected to provide an advanced theranostic strategy for the future treatment of cancers.


Deciphering Selectivity Mechanism of BRD9 and TAF1(2) toward Inhibitors Based on Multiple Short Molecular Dynamics Simulations and MM-GBSA Calculations.

  • Lifei Wang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

BRD9 and TAF1(2) have been regarded as significant targets of drug design for clinically treating acute myeloid leukemia, malignancies, and inflammatory diseases. In this study, multiple short molecular dynamics simulations combined with the molecular mechanics generalized Born surface area method were employed to investigate the binding selectivity of three ligands, 67B, 67C, and 69G, to BRD9/TAF1(2) with IC50 values of 230/59 nM, 1400/46 nM, and 160/410 nM, respectively. The computed binding free energies from the MM-GBSA method displayed good correlations with that provided by the experimental data. The results indicate that the enthalpic contributions played a critical factor in the selectivity recognition of inhibitors toward BRD9 and TAF1(2), indicating that 67B and 67C could more favorably bind to TAF1(2) than BRD9, while 69G had better selectivity toward BRD9 over TAF1(2). In addition, the residue-based free energy decomposition approach was adopted to calculate the inhibitor-residue interaction spectrum, and the results determined the gatekeeper (Y106 in BRD9 and Y1589 in TAF1(2)) and lipophilic shelf (G43, F44, and F45 in BRD9 and W1526, P1527, and F1528 in TAF1(2)), which could be identified as hotspots for designing efficient selective inhibitors toward BRD9 and TAF1(2). This work is also expected to provide significant theoretical guidance and insightful molecular mechanisms for the rational designs of efficient selective inhibitors targeting BRD9 and TAF1(2).


Preterm birth leads to a decreased number of differentiated podocytes and accelerated podocyte differentiation.

  • Lulu Zhang‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2023‎

Preterm birth was previously identified as a high-risk factor for the long-term development of chronic kidney disease. However, the detailed pattern of podocyte (PD) changes caused by preterm birth and the potential mechanism underlying this process have not been well clarified. In present study, a rat model of preterm birth was established by delivery of pups 2 days early and podometric methods were applied to identify the changes in PDs number caused by preterm birth. In addition, single-cell RNA sequencing (scRNA-seq) and subsequent bioinformatic analysis were performed in the preterm rat kidney to explore the possible mechanism caused by preterm birth. As results, when the kidney completely finished nephrogenesis at the age of 3 weeks, a reduction in the total number of differentiated PDs in kidney sections was detected. In addition, 20 distinct clusters and 12 different cell types were identified after scRNA-seq in preterm rats (postnatal day 2) and full-term rats (postnatal day 0). The numbers of PDs and most types of inherent kidney cells were decreased in the preterm birth model. In addition, 177 genes were upregulated while 82 genes were downregulated in the PDs of full-term rats compared with those of preterm rats. Further functional GO analysis revealed that ribosome-related genes were enriched in PDs from full-term rats, and kidney development-related genes were enriched in PDs from preterm rats. Moreover, known PD-specific and PD precursor genes were highly expressed in PDs from preterm rats, and pseudotemporal analysis showed that PDs were present earlier in preterm rats than in full-term rats. In conclusion, the present study showed that preterm birth could cause a reduction in the number of differentiated PDs and accelerate the differentiation of PDs.


A Notch signaling-related lncRNA signature for predicting prognosis and therapeutic response in clear cell renal cell carcinoma.

  • Lulu Zhang‎ et al.
  • Scientific reports‎
  • 2023‎

Increasing evidence has confirmed the vital role of Notch signaling in the tumorigenesis of clear cell renal cell carcinoma (ccRCC). The underlying function of long non-coding RNA (lncRNA) related to Notch signaling in ccRCC remains unclear. In present study, the prognostic value and therapeutic strategy of Notch signaling-related lncRNA are comprehensively explored in ccRCC. In total, we acquired 1422 NSRlncRNAs, of which 41 lncRNAs were identified the key NSRlncRNAs associated with the occurrence of ccRCC. The prognostic signature containing five NSRlncRNAs (AC092611.2, NNT-AS1, AGAP2-AS1, AC147651.3, and AC007406.3) was established and validated, and the ccRCC patients were clustered into the high- and low-risk groups. The overall survival of patients in the low-risk group were much more favorable than those in the high-risk group. Multivariate Cox regression analysis indicated that the risk score was an independent prognostic biomarker. Based on the risk score and clinical variables, a nomogram for predicting prognosis of ccRCC patients was constructed, and the calibration curves and DCA curves showed the superior predictive ability of nomogram. The risk score was correlated with immune cell infiltration, targeted therapy or chemotherapy sensitivity, and multiple oncogenic pathways. Additionally, consensus clustering analysis stratified the ccRCC patients into four clusters with obvious different outcomes, immune microenvironments, and expression of immune checkpoints. The constructed NSRlncRNA-based signature might serve as a potential biomarker for predicting prognosis and response to immunotherapy or targeted therapy in patients with ccRCC.


Orbital septum attachment site on the levator aponeurosis sling for mild congenital blepharoptosis.

  • Jianwei Yang‎ et al.
  • International ophthalmology‎
  • 2024‎

This study aimed to investigate the value of the orbital septum attachment site on the levator aponeurosis (OSASLA) sling in correcting mild congenital blepharoptosis.


Co-expression of metabolites and sensory attributes through weighted correlation network analysis to explore flavor-contributing factors in various Pyrus spp. Cultivars.

  • Wenjun Zhang‎ et al.
  • Food chemistry: X‎
  • 2024‎

Flavor profiles of various Pyrus spp. cultivars exhibit significant variations, yet the underlying flavor-contributing factors remain elusive. In this investigation, a comprehensive approach encompassing metabolomics analysis, volatile fingerprint analysis, and descriptive sensory analysis was employed to elucidate the flavor disparities among Nanguoli, Korla fragrant pear, and Qiuyueli cultivars and uncover potential flavor contributor. The study comprehensively characterized the categories and concentrations of nonvolatile and volatile metabolites, and 925 metabolites were identified. Flavonoids and esters dominated the highest cumulative response, respectively. Utilizing weighted correlation network analysis (WGCNA), seven highly correlated modules were identified, yielding 407 pivotal metabolites. Further correlation analysis of the differential substances provided potential flavor constituents strongly associated with various sensory attributes; taste factors had a certain association with olfactory characteristics. Our findings demonstrated the manifestation of flavor was a result of the synergistic effect of various compounds; evaluation olfactory flavor necessitated a comprehensive consideration of taste substances.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: