Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 26 papers

Rare TREM2 variants associated with Alzheimer's disease display reduced cell surface expression.

  • Daniel W Sirkis‎ et al.
  • Acta neuropathologica communications‎
  • 2016‎

Rare variation in TREM2 has been associated with greater risk for Alzheimer's disease (AD). TREM2 encodes a cell surface receptor expressed on microglia and related cells, and the R47H variant associated with AD appears to affect the ability of TREM2 to bind extracellular ligands. In addition, other rare TREM2 mutations causing early-onset neurodegeneration are thought to impair cell surface expression. Using a sequence kernel association (SKAT) analysis in two independent AD cohorts, we found significant enrichment of rare TREM2 variants not previously characterized at the protein level. Heterologous expression of the identified variants showed that novel variants S31F and R47C displayed significantly reduced cell surface expression. In addition, we identified rare variant R136Q in a patient with language-predominant AD that also showed impaired surface expression. The results suggest rare TREM2 variants enriched in AD may be associated with altered TREM2 function and that AD risk may be conferred, in part, from altered TREM2 surface expression.


Fine-mapping of the human leukocyte antigen locus as a risk factor for Alzheimer disease: A case-control study.

  • Natasha Z R Steele‎ et al.
  • PLoS medicine‎
  • 2017‎

Alzheimer disease (AD) is a progressive disorder that affects cognitive function. There is increasing support for the role of neuroinflammation and aberrant immune regulation in the pathophysiology of AD. The immunoregulatory human leukocyte antigen (HLA) complex has been linked to susceptibility for a number of neurodegenerative diseases, including AD; however, studies to date have failed to consistently identify a risk HLA haplotype for AD. Contributing to this difficulty are the complex genetic organization of the HLA region, differences in sequencing and allelic imputation methods, and diversity across ethnic populations.


The Transcriptional Landscape of Microglial Genes in Aging and Neurodegenerative Disease.

  • Luke W Bonham‎ et al.
  • Frontiers in immunology‎
  • 2019‎

Microglia, the brain-resident myeloid cells, are strongly implicated in Alzheimer's disease (AD) pathogenesis by human genetics. However, the mechanisms by which microglial gene expression is regulated in a region-specific manner over the course of normal aging and in neurodegenerative disease are only beginning to be deciphered. Herein, we used a specific marker of microglia (TMEM119) and a cell-type expression profiling tool (CellMapper) to identify a human microglial gene expression module. Surprisingly, we found that microglial module genes are robustly expressed in several healthy human brain regions known to be vulnerable in AD, in addition to other regions affected only later in disease or spared in AD. Surveying the microglial gene set for differential expression over the lifespan in mouse models of AD and a related tauopathy revealed that the majority of microglial module genes were significantly upregulated in cortex and hippocampus as a function of age and transgene status. Extending these results, we also observed significant upregulation of microglial module genes in several AD-affected brain regions in addition to other regions using postmortem brain tissue from human AD samples. In pathologically confirmed AD cases, we found preliminary evidence that microglial genes may be dysregulated in a sex-specific manner. Finally, we identified specific and significant overlap between the described microglial gene set-identified by unbiased co-expression analysis-and genes known to impart risk for AD. Our findings suggest that microglial genes show enriched expression in AD-vulnerable brain regions, are upregulated during aging and neurodegeneration in mice, and are upregulated in pathologically affected brain regions in AD. Taken together, our data-driven findings from multiple publicly accessible datasets reemphasize the importance of microglial gene expression alterations in AD and, more importantly, suggest that regional and sex-specific variation in microglial gene expression may be implicated in risk for and progression of neurodegenerative disease.


Variation in longevity gene KLOTHO is associated with greater cortical volumes.

  • Jennifer S Yokoyama‎ et al.
  • Annals of clinical and translational neurology‎
  • 2015‎

Identifying genetic variation associated with brain structures in aging may elucidate new biologic mechanisms underlying resilience to cognitive decline. We investigated whether carrying one copy of the protective haplotype "KL-VS" in longevity gene KLOTHO (KL) is associated with greater gray matter volume in healthy human aging compared to carrying no copies.


The relationship between complement factor C3, APOE ε4, amyloid and tau in Alzheimer's disease.

  • Luke W Bonham‎ et al.
  • Acta neuropathologica communications‎
  • 2016‎

Inflammation is becoming increasingly recognized as an important contributor to Alzheimer's disease (AD) pathogenesis. As a part of the innate immune system, the complement cascade enhances the body's ability to destroy and remove pathogens and has recently been shown to influence Alzheimer's associated amyloid and tau pathology. However, little is known in humans about the effects of the complement system and genetic modifiers of AD risk like the ε4 allele of apolioprotein E (APOE ε4) on AD pathobiology. We evaluated cerebrospinal fluid (CSF) protein levels from 267 individuals clinically diagnosed as cognitively normal, mild cognitive impairment, and AD. Using linear models, we assessed the relationship between APOE ε4 genotype, CSF Complement 3 (C3), CSF amyloid-β (amyloid) and CSF hyperphosphorylated tau (ptau). We found a significant interaction between APOE ε4 and CSF C3 on both CSF amyloid and CSF ptau. We also found that CSF C3 is only associated with CSF ptau after accounting for CSF amyloid. Our results support a conceptual model of the AD pathogenic cascade where a synergistic relationship between the complement cascade (C3) and APOE ε4 results in elevated Alzheimer's neurodegeneration and in turn, amyloid further regulates the effect of the complement cascade on downstream tau pathology.


The 5-HTTLPR variant in the serotonin transporter gene modifies degeneration of brain regions important for emotion in behavioral variant frontotemporal dementia.

  • Jennifer S Yokoyama‎ et al.
  • NeuroImage. Clinical‎
  • 2015‎

The serotonin transporter length polymorphism (5-HTTLPR) short allele (5-HTTLPR-s) has been associated with differential susceptibility for anxiety and depression in multiple psychiatric disorders. 5-HTTLPR-s modifies the serotonergic systems that support emotion and behavioral regulation by reducing gene expression, which slows the reuptake of serotonin, and is associated with distinct morphological and functional effects. Serotonergic systems are also shown to be dysfunctional in behavioral variant frontotemporal dementia (bvFTD), a disease characterized by marked socioemotional dysfunction. However, studies of 5-HTTLPR-s effects in bvFTD have been inconsistent. Our objective was to investigate the patterns of gray matter volume by 5-HTTLPR-s genotype in both healthy older controls and bvFTD patients. We performed voxel-based morphometry of 179 cognitively normal older adults and 24 bvFTD cases to determine brain changes associated with dose (0/1/2) of 5-HTTLPR-s allele. 5-HTTLPR-s frequency did not differ between controls and bvFTD. We found a significant interaction effect whereby carrying more 5-HTTLPR-s alleles in bvFTD was associated with smaller volume in left inferior frontal gyrus (T = 4.86, PFWE = 0.03) and larger volume in right temporal lobe (T = 5.01, PFWE = 0.01). These results suggest that the 5-HTTLPR-s allele differentially influences brain morphology in bvFTD. We propose that patients with bvFTD and 5-HTTLPR-s have altered volumes in regions that support socioemotional behavior, which may be a developmental or disease-related compensation for altered serotonergic activity.


Regionally specific TSC1 and TSC2 gene expression in tuberous sclerosis complex.

  • Yi Li‎ et al.
  • Scientific reports‎
  • 2018‎

Tuberous sclerosis complex (TSC), a heritable neurodevelopmental disorder, is caused by mutations in the TSC1 or TSC2 genes. To date, there has been little work to elucidate regional TSC1 and TSC2 gene expression within the human brain, how it changes with age, and how it may influence disease. Using a publicly available microarray dataset, we found that TSC1 and TSC2 gene expression was highest within the adult neo-cerebellum and that this pattern of increased cerebellar expression was maintained throughout postnatal development. During mid-gestational fetal development, however, TSC1 and TSC2 expression was highest in the cortical plate. Using a bioinformatics approach to explore protein and genetic interactions, we confirmed extensive connections between TSC1/TSC2 and the other genes that comprise the mammalian target of rapamycin (mTOR) pathway, and show that the mTOR pathway genes with the highest connectivity are also selectively expressed within the cerebellum. Finally, compared to age-matched controls, we found increased cerebellar volumes in pediatric TSC patients without current exposure to antiepileptic drugs. Considered together, these findings suggest that the cerebellum may play a central role in TSC pathogenesis and may contribute to the cognitive impairment, including the high incidence of autism spectrum disorder, observed in the TSC population.


C9orf72 gene networks in the human brain correlate with cortical thickness in C9-FTD and implicate vulnerable cell types.

  • Iris J Broce‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

A hexanucleotide repeat expansion (HRE) intronic to chromosome 9 open reading frame 72 (C9orf72) is recognized as the most common genetic cause of amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and ALS-FTD. Identifying genes that show similar regional co-expression patterns to C9orf72 may help identify novel gene targets and biological mechanisms that mediate selective vulnerability to ALS and FTD pathogenesis.


Insulin-Like Growth Factor Binding Protein 2 Is Associated With Biomarkers of Alzheimer's Disease Pathology and Shows Differential Expression in Transgenic Mice.

  • Luke W Bonham‎ et al.
  • Frontiers in neuroscience‎
  • 2018‎

There is increasing evidence that metabolic dysfunction plays an important role in Alzheimer's disease (AD). Brain insulin resistance and subsequent impairment of insulin and insulin-like growth factor (IGF) signaling are associated with the neurodegenerative and clinical features of AD. Nevertheless, how the brain insulin/IGF signaling system is altered in AD and the effects of these changes on AD pathobiology are not well understood. IGF binding protein 2 (IGFBP-2) is an abundant cerebral IGF signaling protein and there is early evidence suggesting it associates with AD biomarkers. We evaluated the relationship between protein levels of IGFBP-2 with cerebrospinal fluid (CSF) biomarkers and neuroimaging markers of AD progression in 300 individuals from across the AD spectrum. CSF IGFBP-2 levels were correlated with CSF tau levels and brain atrophy in non-hippocampal regions. To further explore the role of IGFBP2 in tau pathobiology, we evaluated the expression of IGFBP2 in different human and mouse brain cell types and brain tissue from two transgenic mouse models: the P301L-tau model of tauopathy and TASTPM model of AD. We observed significant differential expression of IGFBP2 in both transgenic mouse models relative to wild-type mice in cortex but not in hippocampus. In both humans and mice, IGFBP2 is most highly expressed in astrocytes. Taken together, our findings suggest that IGFBP-2 may be linked to tau pathology and provides further evidence for a relationship between metabolic dysregulation and neurodegeneration. Our results also raise the possibility that this relationship may extend beyond neurons.


Decision tree analysis of genetic risk for clinically heterogeneous Alzheimer's disease.

  • Jennifer S Yokoyama‎ et al.
  • BMC neurology‎
  • 2015‎

Heritability of Alzheimer's disease (AD) is estimated at 74% and genetic contributors have been widely sought. The ε4 allele of apolipoprotein E (APOE) remains the strongest common risk factor for AD, with numerous other common variants contributing only modest risk for disease. Variability in clinical presentation of AD, which is typically amnestic (AmnAD) but can less commonly involve visuospatial, language and/or dysexecutive syndromes (atypical or AtAD), further complicates genetic analyses. Taking a multi-locus approach may increase the ability to identify individuals at highest risk for any AD syndrome. In this study, we sought to develop and investigate the utility of a multi-variant genetic risk assessment on a cohort of phenotypically heterogeneous patients with sporadic AD clinical diagnoses.


Systemic klotho is associated with KLOTHO variation and predicts intrinsic cortical connectivity in healthy human aging.

  • Jennifer S Yokoyama‎ et al.
  • Brain imaging and behavior‎
  • 2017‎

Cognitive decline is a major biomedical challenge as the global population ages. Elevated levels of the longevity factor klotho suppress aging, enhance cognition, and promote synaptic plasticity and neural resilience against aging and Alzheimer's disease (AD)-related pathogenic proteins. Here, we examined the relationship between human genetic variants of KLOTHO and systemic klotho levels - and assessed neuroanatomic correlates of serum klotho in a cohort of healthy older adults. Serum klotho levels were increased with KL-VS heterozygosity, as anticipated. We report, for the first time, that serum klotho levels were paradoxically decreased with KL-VS homozygosity. Further, we found that higher serum klotho levels were associated with measures of greater intrinsic connectivity in key functional networks of the brain vulnerable to aging and AD such as the fronto-parietal and default mode networks. Our findings suggest that elevated klotho promotes a resilient brain, possibly through increased network connectivity of critical brain regions.


Age-dependent effects of APOE ε4 in preclinical Alzheimer's disease.

  • Luke W Bonham‎ et al.
  • Annals of clinical and translational neurology‎
  • 2016‎

The ε4 allele of apolipoprotein E (APOE) is the strongest known common genetic risk factor for Alzheimer's disease (AD) and alters age of onset in retrospective studies. Here, we longitudinally test the effects of APOE ε4 genotype and age during progression from normal cognition to AD.


Genetic architecture of sporadic frontotemporal dementia and overlap with Alzheimer's and Parkinson's diseases.

  • Raffaele Ferrari‎ et al.
  • Journal of neurology, neurosurgery, and psychiatry‎
  • 2017‎

Clinical, pathological and genetic overlap between sporadic frontotemporal dementia (FTD), Alzheimer's disease (AD) and Parkinson's disease (PD) has been suggested; however, the relationship between these disorders is still not well understood. Here we evaluated genetic overlap between FTD, AD and PD to assess shared pathobiology and identify novel genetic variants associated with increased risk for FTD.


Shared genetic risk between corticobasal degeneration, progressive supranuclear palsy, and frontotemporal dementia.

  • Jennifer S Yokoyama‎ et al.
  • Acta neuropathologica‎
  • 2017‎

Corticobasal degeneration (CBD), progressive supranuclear palsy (PSP) and a subset of frontotemporal dementia (FTD) are neurodegenerative disorders characterized by tau inclusions in neurons and glia (tauopathies). Although clinical, pathological and genetic evidence suggests overlapping pathobiology between CBD, PSP, and FTD, the relationship between these disorders is still not well understood. Using summary statistics (odds ratios and p values) from large genome-wide association studies (total n = 14,286 cases and controls) and recently established genetic methods, we investigated the genetic overlap between CBD and PSP and CBD and FTD. We found up to 800-fold enrichment of genetic risk in CBD across different levels of significance for PSP or FTD. In addition to NSF (tagging the MAPT H1 haplotype), we observed that SNPs in or near MOBP, CXCR4, EGFR, and GLDC showed significant genetic overlap between CBD and PSP, whereas only SNPs tagging the MAPT haplotype overlapped between CBD and FTD. The risk alleles of the shared SNPs were associated with expression changes in cis-genes. Evaluating transcriptome levels across adult human brains, we found a unique neuroanatomic gene expression signature for each of the five overlapping gene loci (omnibus ANOVA p < 2.0 × 10-16). Functionally, we found that these shared risk genes were associated with protein interaction and gene co-expression networks and showed enrichment for several neurodevelopmental pathways. Our findings suggest: (1) novel genetic overlap between CBD and PSP beyond the MAPT locus; (2) strong ties between CBD and FTD through the MAPT clade, and (3) unique combinations of overlapping genes that may, in part, influence selective regional or neuronal vulnerability observed in specific tauopathies.


Genetic Variation in the Androgen Receptor and Measures of Plasma Testosterone Levels Suggest Androgen Dysfunction in Alzheimer's Disease.

  • Jessie S Carr‎ et al.
  • Frontiers in neuroscience‎
  • 2018‎

Alzheimer's disease (AD) prevalence varies by sex, suggesting that sex chromosomes, sex hormones and/or their signaling could potentially modulate AD risk and progression. Low testosterone levels are reported in men with AD. Further, variation in the androgen receptor (AR) gene has been associated with AD risk and cognitive impairment. We assessed measures of plasma testosterone levels as a biomarker of AD in male participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. Baseline testosterone levels were significantly different between clinical diagnosis groups [cognitively normal controls, mild cognitive impairment (MCI), or AD], with the lowest testosterone levels in men with AD. Lower baseline testosterone levels were associated with higher baseline clinical severity. Change in testosterone levels between baseline and 1-year follow-up varied by diagnosis; MCI had the greatest decreases in testosterone levels between baseline and 1-year follow-up. Despite differences by clinical diagnosis, there was no association between plasma testosterone and CSF biomarkers of AD pathology. We also tested single nucleotide polymorphisms (SNPs) in AR for association with AD risk in a separate cohort from ADNI and found 26 SNPs associated with risk for AD. The top associated SNP is predicted to be an expression quantitative trait locus for AR in multiple tissues, including brain, with the AD-associated risk allele predicted to confer lower AR expression. Our findings suggest a link between the androgen pathway and AD through Aβ/tau independent pathways. These effects may be most pronounced during conversion from MCI to dementia.


Protein network analysis reveals selectively vulnerable regions and biological processes in FTD.

  • Luke W Bonham‎ et al.
  • Neurology. Genetics‎
  • 2018‎

The neuroanatomical profile of behavioral variant frontotemporal dementia (bvFTD) suggests a common biological etiology of disease despite disparate pathologic causes; we investigated the genetic underpinnings of this selective regional vulnerability to identify new risk factors for bvFTD.


Non-coding and Loss-of-Function Coding Variants in TET2 are Associated with Multiple Neurodegenerative Diseases.

  • J Nicholas Cochran‎ et al.
  • American journal of human genetics‎
  • 2020‎

We conducted genome sequencing to search for rare variation contributing to early-onset Alzheimer's disease (EOAD) and frontotemporal dementia (FTD). Discovery analysis was conducted on 435 cases and 671 controls of European ancestry. Burden testing for rare variation associated with disease was conducted using filters based on variant rarity (less than one in 10,000 or private), computational prediction of deleteriousness (CADD) (10 or 15 thresholds), and molecular function (protein loss-of-function [LoF] only, coding alteration only, or coding plus non-coding variants in experimentally predicted regulatory regions). Replication analysis was conducted on 16,434 independent cases and 15,587 independent controls. Rare variants in TET2 were enriched in the discovery combined EOAD and FTD cohort (p = 4.6 × 10-8, genome-wide corrected p = 0.0026). Most of these variants were canonical LoF or non-coding in predicted regulatory regions. This enrichment replicated across several cohorts of Alzheimer's disease (AD) and FTD (replication only p = 0.0029). The combined analysis odds ratio was 2.3 (95% confidence interval [CI] 1.6-3.4) for AD and FTD. The odds ratio for qualifying non-coding variants considered independently from coding variants was 3.7 (95% CI 1.7-9.4). For LoF variants, the combined odds ratio (for AD, FTD, and amyotrophic lateral sclerosis, which shares clinicopathological overlap with FTD) was 3.1 (95% CI 1.9-5.2). TET2 catalyzes DNA demethylation. Given well-defined changes in DNA methylation that occur during aging, rare variation in TET2 may confer risk for neurodegeneration by altering the homeostasis of key aging-related processes. Additionally, our study emphasizes the relevance of non-coding variation in genetic studies of complex disease.


FTLD targets brain regions expressing recently evolved genes.

  • Lorenzo Pasquini‎ et al.
  • medRxiv : the preprint server for health sciences‎
  • 2023‎

In frontotemporal lobar degeneration (FTLD), pathological protein aggregation is associated with a decline in human-specialized social-emotional and language functions. Most disease protein aggregates contain either TDP-43 (FTLD-TDP) or tau (FTLD-tau). Here, we explored whether FTLD targets brain regions that express genes containing human accelerated regions (HARs), conserved sequences that have undergone positive selection during recent human evolution. To this end, we used structural neuroimaging from patients with FTLD and normative human regional transcriptomic data to identify genes expressed in FTLD-targeted brain regions. We then integrated primate comparative genomic data to test our hypothesis that FTLD targets brain regions expressing recently evolved genes. In addition, we asked whether genes expressed in FTLD-targeted brain regions are enriched for genes that undergo cryptic splicing when TDP-43 function is impaired. We found that FTLD-TDP and FTLD-tau subtypes target brain regions that express overlapping and distinct genes, including many linked to neuromodulatory functions. Genes whose normative brain regional expression pattern correlated with FTLD cortical atrophy were strongly associated with HARs. Atrophy-correlated genes in FTLD-TDP showed greater overlap with TDP-43 cryptic splicing genes compared with atrophy-correlated genes in FTLD-tau. Cryptic splicing genes were enriched for HAR genes, and vice versa, but this effect was due to the confounding influence of gene length. Analyses performed at the individual-patient level revealed that the expression of HAR genes and cryptically spliced genes within putative regions of disease onset differed across FTLD-TDP subtypes. Overall, our findings suggest that FTLD targets brain regions that have undergone recent evolutionary specialization and provide intriguing potential leads regarding the transcriptomic basis for selective vulnerability in distinct FTLD molecular-anatomical subtypes.


Genetic variation across RNA metabolism and cell death gene networks is implicated in the semantic variant of primary progressive aphasia.

  • Luke W Bonham‎ et al.
  • Scientific reports‎
  • 2019‎

The semantic variant of primary progressive aphasia (svPPA) is a clinical syndrome characterized by neurodegeneration and progressive loss of semantic knowledge. Unlike many other forms of frontotemporal lobar degeneration (FTLD), svPPA has a highly consistent underlying pathology composed of TDP-43 (a regulator of RNA and DNA transcription metabolism). Previous genetic studies of svPPA are limited by small sample sizes and a paucity of common risk variants. Despite this, svPPA's relatively homogenous clinicopathologic phenotype makes it an ideal investigative model to examine genetic processes that may drive neurodegenerative disease. In this study, we used GWAS metadata, tissue samples from pathologically confirmed frontotemporal lobar degeneration, and in silico techniques to identify and characterize protein interaction networks associated with svPPA risk. We identified 64 svPPA risk genes that interact at the protein level. The protein pathways represented in this svPPA gene network are critical regulators of RNA metabolism and cell death, such as SMAD proteins and NOTCH1. Many of the genes in this network are involved in TDP-43 metabolism. Contrary to the conventional notion that svPPA is a clinical syndrome with few genetic risk factors, our analyses show that svPPA risk is complex and polygenic in nature. Risk for svPPA is likely driven by multiple common variants in genes interacting with TDP-43, along with cell death,x` working in combination to promote neurodegeneration.


Single-cell RNA-seq reveals alterations in peripheral CX3CR1 and nonclassical monocytes in familial tauopathy.

  • Daniel W Sirkis‎ et al.
  • Genome medicine‎
  • 2023‎

Emerging evidence from mouse models is beginning to elucidate the brain's immune response to tau pathology, but little is known about the nature of this response in humans. In addition, it remains unclear to what extent tau pathology and the local inflammatory response within the brain influence the broader immune system.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: