Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

Distinct bone marrow-derived and tissue-resident macrophage lineages proliferate at key stages during inflammation.

  • Luke C Davies‎ et al.
  • Nature communications‎
  • 2013‎

The general paradigm is that monocytes are recruited to sites of inflammation and terminally differentiate into macrophages. There has been no demonstration of proliferation of peripherally-derived inflammatory macrophages under physiological conditions. Here we show that proliferation of both bone marrow-derived inflammatory and tissue-resident macrophage lineage branches is a key feature of the inflammatory process with major implications for the mechanisms underlying recovery from inflammation. Both macrophage lineage branches are dependent on M-CSF during inflammation, and thus the potential for therapeutic interventions is marked. Furthermore, these observations are independent of Th2 immunity. These studies indicate that the proliferation of distinct macrophage populations provides a general mechanism for macrophage expansion at key stages during inflammation, and separate control mechanisms are implicated.


Peritoneal tissue-resident macrophages are metabolically poised to engage microbes using tissue-niche fuels.

  • Luke C Davies‎ et al.
  • Nature communications‎
  • 2017‎

The importance of metabolism in macrophage function has been reported, but the in vivo relevance of the in vitro observations is still unclear. Here we show that macrophage metabolites are defined in a specific tissue context, and these metabolites are crucially linked to tissue-resident macrophage functions. We find the peritoneum to be rich in glutamate, a glutaminolysis-fuel that is exploited by peritoneal-resident macrophages to maintain respiratory burst during phagocytosis via enhancing mitochondrial complex-II metabolism. This niche-supported, inducible mitochondrial function is dependent on protein kinase C activity, and is required to fine-tune the cytokine responses that control inflammation. In addition, we find that peritoneal-resident macrophage mitochondria are recruited to phagosomes and produce mitochondrially derived reactive oxygen species, which are necessary for microbial killing. We propose that tissue-resident macrophages are metabolically poised in situ to protect and exploit their tissue-niche by utilising locally available fuels to implement specific metabolic programmes upon microbial sensing.


Nitric oxide orchestrates metabolic rewiring in M1 macrophages by targeting aconitase 2 and pyruvate dehydrogenase.

  • Erika M Palmieri‎ et al.
  • Nature communications‎
  • 2020‎

Profound metabolic changes are characteristic of macrophages during classical activation and have been implicated in this phenotype. Here we demonstrate that nitric oxide (NO) produced by murine macrophages is responsible for TCA cycle alterations and citrate accumulation associated with polarization. 13C tracing and mitochondrial respiration experiments map NO-mediated suppression of metabolism to mitochondrial aconitase (ACO2). Moreover, we find that inflammatory macrophages reroute pyruvate away from pyruvate dehydrogenase (PDH) in an NO-dependent and hypoxia-inducible factor 1α (Hif1α)-independent manner, thereby promoting glutamine-based anaplerosis. Ultimately, NO accumulation leads to suppression and loss of mitochondrial electron transport chain (ETC) complexes. Our data reveal that macrophages metabolic rewiring, in vitro and in vivo, is dependent on NO targeting specific pathways, resulting in reduced production of inflammatory mediators. Our findings require modification to current models of macrophage biology and demonstrate that reprogramming of metabolism should be considered a result rather than a mediator of inflammatory polarization.


The protective effect of inflammatory monocytes during systemic C. albicans infection is dependent on collaboration between C-type lectin-like receptors.

  • Aiysha Thompson‎ et al.
  • PLoS pathogens‎
  • 2019‎

Invasive candidiasis, mainly caused by Candida albicans, is a serious healthcare problem with high mortality rates, particularly in immunocompromised patients. Innate immune cells express pathogen recognition receptors (PRRs) including C-type lectin-like receptors (CLRs) that bind C. albicans to initiate an immune response. Multiple CLRs including Dectin-1, Dectin-2 and Mincle have been proposed individually to contribute to the immune response to C. albicans. However how these receptors collaborate to clear a fungal infection is unknown. Herein, we used novel multi-CLR knockout (KO) mice to decipher the individual, collaborative and collective roles of Dectin-1, Dectin-2 and Mincle during systemic C. albicans infection. These studies revealed an unappreciated and profound role for CLR co-operation in anti-fungal immunity. The protective effect of multiple CLRs was markedly greater than any single receptor, and was mediated through inflammatory monocytes via recognition and phagocytosis of C. albicans, and production of C. albicans-induced cytokines and chemokines. These CLRs were dispensable for mediating similar responses from neutrophils, likely due to lower expression of these CLRs on neutrophils compared to inflammatory monocytes. Concurrent deletion of Dectin-1 and Dectin-2, or all three CLRs, resulted in dramatically increased susceptibility to systemic C. albicans infection compared to mice lacking a single CLR. Multi-CLR KO mice were unable to control fungal growth due to an inadequate early inflammatory monocyte-mediated response. In response to excessive fungal growth, the multi-CLR KO mice mounted a hyper-inflammatory response, likely leading to multiple organ failure. Thus, these data reveal a critical role for CLR co-operation in the effective control of C. albicans and maintenance of organ function during infection.


Oxylipin metabolism is controlled by mitochondrial β-oxidation during bacterial inflammation.

  • Mariya Misheva‎ et al.
  • Nature communications‎
  • 2022‎

Oxylipins are potent biological mediators requiring strict control, but how they are removed en masse during infection and inflammation is unknown. Here we show that lipopolysaccharide (LPS) dynamically enhances oxylipin removal via mitochondrial β-oxidation. Specifically, genetic or pharmacological targeting of carnitine palmitoyl transferase 1 (CPT1), a mitochondrial importer of fatty acids, reveal that many oxylipins are removed by this protein during inflammation in vitro and in vivo. Using stable isotope-tracing lipidomics, we find secretion-reuptake recycling for 12-HETE and its intermediate metabolites. Meanwhile, oxylipin β-oxidation is uncoupled from oxidative phosphorylation, thus not contributing to energy generation. Testing for genetic control checkpoints, transcriptional interrogation of human neonatal sepsis finds upregulation of many genes involved in mitochondrial removal of long-chain fatty acyls, such as ACSL1,3,4, ACADVL, CPT1B, CPT2 and HADHB. Also, ACSL1/Acsl1 upregulation is consistently observed following the treatment of human/murine macrophages with LPS and IFN-γ. Last, dampening oxylipin levels by β-oxidation is suggested to impact on their regulation of leukocyte functions. In summary, we propose mitochondrial β-oxidation as a regulatory metabolic checkpoint for oxylipins during inflammation.


Autocrine IL-10 functions as a rheostat for M1 macrophage glycolytic commitment by tuning nitric oxide production.

  • Walter A Baseler‎ et al.
  • Redox biology‎
  • 2016‎

Inflammatory maturation of M1 macrophages by proinflammatory stimuli such as toll like receptor ligands results in profound metabolic reprogramming resulting in commitment to aerobic glycolysis as evidenced by repression of mitochondrial oxidative phosphorylation (OXPHOS) and enhanced glucose utilization. In contrast, "alternatively activated" macrophages adopt a metabolic program dominated by fatty acid-fueled OXPHOS. Despite the known importance of these developmental stages on the qualitative aspects of an inflammatory response, relatively little is know regarding the regulation of these metabolic adjustments. Here we provide evidence that the immunosuppressive cytokine IL-10 defines a metabolic regulatory loop. Our data show for the first time that lipopolysaccharide (LPS)-induced glycolytic flux controls IL-10-production via regulation of mammalian target of rapamycin (mTOR) and that autocrine IL-10 in turn regulates macrophage nitric oxide (NO) production. Genetic and pharmacological manipulation of IL-10 and nitric oxide (NO) establish that metabolically regulated autocrine IL-10 controls glycolytic commitment by limiting NO-mediated suppression of OXPHOS. Together these data support a model where autocine IL-10 production is controlled by glycolytic flux in turn regulating glycolytic commitment by preserving OXPHOS via suppression of NO. We propose that this IL-10-driven metabolic rheostat maintains metabolic equilibrium during M1 macrophage differentiation and that perturbation of this regulatory loop, either directly by exogenous cellular sources of IL-10 or indirectly via limitations in glucose availability, skews the cellular metabolic program altering the balance between inflammatory and immunosuppressive phenotypes.


IL-10 differentially controls the infiltration of inflammatory macrophages and antigen-presenting cells during inflammation.

  • Chia-Te Liao‎ et al.
  • European journal of immunology‎
  • 2016‎

The inflammatory activation and recruitment of defined myeloid populations is essential for controlling the bridge between innate and adaptive immunity and shaping the immune response to microbial challenge. However, these cells exhibit significant functional heterogeneity and the inflammatory signals that differentially influence their effector characteristics are poorly characterized. In this study, we defined the phenotype of discrete subsets of effective antigen-presenting cells (APCs) in the peritoneal cavity during peritonitis. When the functional properties of these cells were compared to inflammatory monocyte-derived macrophages we noted differential responses to the immune-modulatory cytokine IL-10. In contrast to the suppressive actions of IL-10 on inflammatory macrophages, the recruitment of APCs was relatively refractory and we found no evidence for selective inhibition of APC differentiation. This differential response of myeloid cell subsets to IL-10 may thus have limited impact on development of potentially tissue-damaging adaptive immune responses, while restricting the magnitude of the inflammatory response. These findings may have clinical relevance in the context of peritoneal dialysis patients, where recurrent infections are associated with immune-mediated membrane dysfunction, treatment failure, and increased morbidity.


Itaconic acid mediates crosstalk between macrophage metabolism and peritoneal tumors.

  • Jonathan M Weiss‎ et al.
  • The Journal of clinical investigation‎
  • 2018‎

Control of cellular metabolism is critical for efficient cell function, although little is known about the interplay between cell subset-specific metabolites in situ, especially in the tumor setting. Here, we determined how a macrophage-specific (Mϕ-specific) metabolite, itaconic acid, can regulate tumor progression in the peritoneum. We show that peritoneal tumors (B16 melanoma or ID8 ovarian carcinoma) elicited a fatty acid oxidation-mediated increase in oxidative phosphorylation (OXPHOS) and glycolysis in peritoneal tissue-resident macrophages (pResMϕ). Unbiased metabolomics identified itaconic acid, the product of immune-responsive gene 1-mediated (Irg1-mediated) catabolism of mitochondrial cis-aconitate, among the most highly upregulated metabolites in pResMϕ of tumor-bearing mice. Administration of lentivirally encoded Irg1 shRNA significantly reduced peritoneal tumors. This resulted in reductions in OXPHOS and OXPHOS-driven production of ROS in pResMϕ and ROS-mediated MAPK activation in tumor cells. Our findings demonstrate that tumors profoundly alter pResMϕ metabolism, leading to the production of itaconic acid, which potentiates tumor growth. Monocytes isolated from ovarian carcinoma patients' ascites fluid expressed significantly elevated levels of IRG1. Therefore, IRG1 in pResMϕ represents a potential therapeutic target for peritoneal tumors.


Effective In Vivo Gene Modification in Mouse Tissue-Resident Peritoneal Macrophages by Intraperitoneal Delivery of Lentiviral Vectors.

  • Natacha Ipseiz‎ et al.
  • Molecular therapy. Methods & clinical development‎
  • 2020‎

Tissue-resident macrophages exhibit specialized phenotypes dependent on their in vivo physiological niche. Investigation of their function often relies upon complex whole mouse transgenic studies. While some appropriate lineage-associated promoters exist, there are no options for tissue-specific targeting of macrophages. We have developed full protocols for in vivo productive infection (defined by stable transgene expression) of tissue-resident macrophages with lentiviral vectors, enabling RNA and protein overexpression, including expression of small RNA species such as shRNA, to knock down and modulate gene expression. These approaches allow robust infection of peritoneal tissue-resident macrophages without significant infection of other cell populations. They permit rapid functional study of macrophages in homeostatic and inflammatory settings, such as thioglycolate-induced peritonitis, while maintaining the cells in their physiological context. Here we provide detailed protocols for the whole workflow: viral production, purification, and quality control; safety considerations for administration of the virus to mice; and assessment of in vivo transduction efficiency and the low background levels of inflammation induced by the virus. In summary, we present a quick and accessible protocol for the rapid assessment of gene function in peritoneal tissue-resident macrophages in vivo.


Tissue-resident macrophages actively suppress IL-1beta release via a reactive prostanoid/IL-10 pathway.

  • Natacha Ipseiz‎ et al.
  • The EMBO journal‎
  • 2020‎

The alarm cytokine interleukin-1β (IL-1β) is a potent activator of the inflammatory cascade following pathogen recognition. IL-1β production typically requires two signals: first, priming by recognition of pathogen-associated molecular patterns leads to the production of immature pro-IL-1β; subsequently, inflammasome activation by a secondary signal allows cleavage and maturation of IL-1β from its pro-form. However, despite the important role of IL-1β in controlling local and systemic inflammation, its overall regulation is still not fully understood. Here we demonstrate that peritoneal tissue-resident macrophages use an active inhibitory pathway, to suppress IL-1β processing, which can otherwise occur in the absence of a second signal. Programming by the transcription factor Gata6 controls the expression of prostacyclin synthase, which is required for prostacyclin production after lipopolysaccharide stimulation and optimal induction of IL-10. In the absence of secondary signal, IL-10 potently inhibits IL-1β processing, providing a previously unrecognized control of IL-1β in tissue-resident macrophages.


mSep: investigating physiological and immune-metabolic biomarkers in septic and healthy pregnant women to predict feto-maternal immune health - a prospective observational cohort study protocol.

  • Simran Sharma‎ et al.
  • BMJ open‎
  • 2022‎

Maternal sepsis remains a leading cause of death in pregnancy. Physiological adaptations to pregnancy obscure early signs of sepsis and can result in delays in recognition and treatment. Identifying biomarkers that can reliably diagnose sepsis will reduce morbidity and mortality and antibiotic overuse. We have previously identified an immune-metabolic biomarker network comprising three pathways with a >99% accuracy for detecting bacterial neonatal sepsis. In this prospective study, we will describe physiological parameters and novel biomarkers in two cohorts-healthy pregnant women and pregnant women with suspected sepsis-with the aim of mapping pathophysiological drivers and evaluating predictive biomarkers for diagnosing maternal sepsis.


Tumour-elicited neutrophils engage mitochondrial metabolism to circumvent nutrient limitations and maintain immune suppression.

  • Christopher M Rice‎ et al.
  • Nature communications‎
  • 2018‎

Neutrophils are a vital component of immune protection, yet in cancer they may promote tumour progression, partly by generating reactive oxygen species (ROS) that disrupts lymphocyte functions. Metabolically, neutrophils are often discounted as purely glycolytic. Here we show that immature, c-Kit+ neutrophils subsets can engage in oxidative mitochondrial metabolism. With limited glucose supply, oxidative neutrophils use mitochondrial fatty acid oxidation to support NADPH oxidase-dependent ROS production. In 4T1 tumour-bearing mice, mitochondrial fitness is enhanced in splenic neutrophils and is driven by c-Kit signalling. Concordantly, tumour-elicited oxidative neutrophils are able to maintain ROS production and T cell suppression when glucose utilisation is restricted. Consistent with these findings, peripheral blood neutrophils from patients with cancer also display increased immaturity, mitochondrial content and oxidative phosphorylation. Together, our data suggest that the glucose-restricted tumour microenvironment induces metabolically adapted, oxidative neutrophils to maintain local immune suppression.


Tissue-resident macrophages: then and now.

  • Luke C Davies‎ et al.
  • Immunology‎
  • 2015‎

Macrophages have been at the heart of immune research for over a century and are an integral component of innate immunity. Macrophages are often viewed as terminally differentiated monocytic phagocytes. They infiltrate tissues during inflammation, and form polarized populations that perform pro-inflammatory or anti-inflammatory functions. Tissue-resident macrophages were regarded as differentiated monocytes, which seed the tissues to perform immune sentinel and homeostatic functions. However, tissue-resident macrophages are not a homogeneous population, but are in fact a grouping of cells with similar functions and phenotypes. In the last decade, it has been revealed that many of these cells are not terminally differentiated and, in most cases, are not derived from haematopoiesis in the adult. Recent research has highlighted that tissue-resident macrophages cannot be grouped into simple polarized categories, especially in vivo, when they are exposed to complex signalling events. It has now been demonstrated that the tissue environment itself is a major controller of macrophage phenotype, and can influence the expression of many genes regardless of origin. This is consistent with the concept that cells within different tissues have diverse responses in inflammation. There is still a mountain to climb in the field, as it evolves to encompass not only tissue-resident macrophage diversity, but also categorization of specific tissue environments and the plasticity of macrophages themselves. This knowledge provides a new perspective on therapeutic strategies, as macrophage subsets can potentially be manipulated to control the inflammatory environment in a tissue-specific manner.


miR-192 induces G2/M growth arrest in aristolochic acid nephropathy.

  • Robert H Jenkins‎ et al.
  • The American journal of pathology‎
  • 2014‎

Aristolochic acid nephropathy is characterized by rapidly progressive tubulointerstitial nephritis culminating in end-stage renal failure and urothelial malignancy. Profibrotic effects of aristolochic acid are linked to growth arrest of proximal tubular epithelial cells; however, the underlying mechanisms are largely undetermined. miRNAs are small, endogenous, post-transcriptional regulators of gene expression implicated in numerous physiological and pathological processes. In the present study, we characterized the mechanism of aristolochic acid-induced cell cycle arrest and its regulation by miRNAs. Incubation with aristolochic acid led to profound G2/M arrest in proximal tubular epithelial cells via p53-mediated inactivation of the maturation-promoting complex, CDK1/cyclin-B1. Analysis of miRNA expression identified up-regulation of miRNAs, including miR-192, miR-194, miR-450a, and miR-542-3p. The stable overexpression of miR-192 recapitulated G2/M arrest via repression of the E3 ubiquitin ligase, murine double-minute 2, a negative regulator of p53. p53-induced transcription of p21(cip1) and growth arrest and DNA damage 45 and resulted in the inactivation and dissociation of the maturation-promoting complex. These data demonstrate a core role for miR-192 in mediating proximal tubular epithelial cell G2/M arrest after toxic injury by aristolochic acid. Because numerous studies have linked such growth arrest to fibrosis after proximal tubular epithelial cell injury, this mechanism may have widespread relevance to recovery/nonrecovery after acute kidney injury.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: