Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

Resurrecting Darwin's Niata - anatomical, biomechanical, genetic, and morphometric studies of morphological novelty in cattle.

  • Kristof Veitschegger‎ et al.
  • Scientific reports‎
  • 2018‎

The Niata was a cattle variety from South America that figured prominently in writings on evolution by Charles Darwin. Its shortened head and other aspects of its unusual morphology have been subject of unsettled discussions since Darwin's time. Here, we examine the anatomy, cranial shape, skull biomechanics, and population genetics of the Niata. Our results show that the Niata was a viable variety of cattle and exhibited anatomical differences to known chondrodysplastic forms. In cranial shape and genetic analysis, the Niata occupies an isolated position clearly separated from other cattle. Computational biomechanical model comparison reveals that the shorter face of the Niata resulted in a restricted distribution and lower magnitude of stress during biting. Morphological and genetic data illustrate the acquisition of novelty in the domestication process and confirm the distinct nature of the Niata cattle, validating Darwin's view that it was a true breed.


Population genomics analyses of European ibex species show lower diversity and higher inbreeding in reintroduced populations.

  • Christine Grossen‎ et al.
  • Evolutionary applications‎
  • 2018‎

Restoration of lost species ranges to their native distribution is key for the survival of endangered species. However, reintroductions often fail and long-term genetic consequences are poorly understood. Alpine ibex (Capra ibex) are wild goats that recovered from <100 individuals to ~50,000 within a century by population reintroductions. We analyzed the population genomic consequences of the Alpine ibex reintroduction strategy. We genotyped 101,822 genomewide single nucleotide polymorphism loci in 173 Alpine ibex, the closely related Iberian ibex (Capra pyrenaica) and domestic goat (Capra hircus). The source population of all Alpine ibex maintained genetic diversity comparable to Iberian ibex, which experienced less severe bottlenecks. All reintroduced Alpine ibex populations had individually and combined lower levels of genetic diversity than the source population. The reintroduction strategy consisted of primary reintroductions from captive breeding and secondary reintroductions from established populations. This stepwise reintroduction strategy left a strong genomic footprint of population differentiation, which increased with subsequent rounds of reintroductions. Furthermore, analyses of genomewide runs of homozygosity showed recent inbreeding primarily in individuals of reintroduced populations. We showed that despite the rapid census recovery, Alpine ibex carry a persistent genomic signature of their reintroduction history. We discuss how genomic monitoring can serve as an early indicator of inbreeding.


Immigration counter-acts local micro-evolution of a major fitness component: Migration-selection balance in free-living song sparrows.

  • Jane M Reid‎ et al.
  • Evolution letters‎
  • 2021‎

Ongoing adaptive evolution, and resulting "evolutionary rescue" of declining populations, requires additive genetic variation in fitness. Such variation can be increased by gene flow resulting from immigration, potentially facilitating evolution. But, gene flow could in fact constrain rather than facilitate local adaptive evolution if immigrants have low additive genetic values for local fitness. Local migration-selection balance and micro-evolutionary stasis could then result. However, key quantitative genetic effects of natural immigration, comprising the degrees to which gene flow increases the total local additive genetic variance yet counteracts local adaptive evolutionary change, have not been explicitly quantified in wild populations. Key implications of gene flow for population and evolutionary dynamics consequently remain unclear. Our quantitative genetic analyses of long-term data from free-living song sparrows (Melospiza melodia) show that mean breeding value for local juvenile survival to adulthood, a major component of fitness, increased across cohorts more than expected solely due to drift. Such micro-evolutionary change should be expected given nonzero additive genetic variance and consistent directional selection. However, this evolutionary increase was counteracted by negative additive genetic effects of recent immigrants, which increased total additive genetic variance but prevented a net directional evolutionary increase in total additive genetic value. These analyses imply an approximate quantitative genetic migration-selection balance in a major fitness component, and hence demonstrate a key mechanism by which substantial additive genetic variation can be maintained yet decoupled from local adaptive evolutionary change.


Nonequivalent lethal equivalents: Models and inbreeding metrics for unbiased estimation of inbreeding load.

  • Pirmin Nietlisbach‎ et al.
  • Evolutionary applications‎
  • 2019‎

Inbreeding depression, the deterioration in mean trait value in progeny of related parents, is a fundamental quantity in genetics, evolutionary biology, animal and plant breeding, and conservation biology. The magnitude of inbreeding depression can be quantified by the inbreeding load, typically measured in numbers of lethal equivalents, a population genetic quantity that allows for comparisons between environments, populations or species. However, there is as yet no quantitative assessment of which combinations of statistical models and metrics of inbreeding can yield such estimates. Here, we review statistical models that have been used to estimate inbreeding load and use population genetic simulations to investigate how unbiased estimates can be obtained using genomic and pedigree-based metrics of inbreeding. We use simulated binary viability data (i.e., dead versus alive) as our example, but the concepts apply to any trait that exhibits inbreeding depression. We show that the increasingly popular generalized linear models with logit link do not provide comparable and unbiased population genetic measures of inbreeding load, independent of the metric of inbreeding used. Runs of homozygosity result in unbiased estimates of inbreeding load, whereas inbreeding measured from pedigrees results in slight overestimates. Due to widespread use of models that do not yield unbiased measures of the inbreeding load, some estimates in the literature cannot be compared meaningfully. We surveyed the literature for reliable estimates of the mean inbreeding load from wild vertebrate populations and found an average of 3.5 haploid lethal equivalents for survival to sexual maturity. To obtain comparable estimates, we encourage researchers to use generalized linear models with logarithmic links or maximum-likelihood estimation of the exponential equation, and inbreeding coefficients calculated from runs of homozygosity, provided an assembled reference genome of sufficient quality and enough genetic marker data are available.


Abundant variation in microsatellites of the parasitic nematode Trichostrongylus tenuis and linkage to a tandem repeat.

  • Paul C D Johnson‎ et al.
  • Molecular and biochemical parasitology‎
  • 2006‎

An understanding of how genes move between and within populations of parasitic nematodes is important in combating the evolution and spread of anthelmintic resistance. Much has been learned by studying mitochondrial DNA markers, but autosomal markers such as microsatellites have been applied to only a few nematode species, despite their many advantages for studying gene flow in eukaryotes. Here, we describe the isolation of 307 microsatellites from Trichostrongylus tenuis, an intestinal nematode of red grouse. High levels of variation were revealed at sixteen microsatellite loci (including three sex-lined loci) in 111 male T. tenuis nematodes collected from four hosts at a single grouse estate in Scotland (average He = 0.708; mean number of alleles = 12.2). A population genetic analysis detected no deviation from panmixia either between (F(ST) = 0.00) or within hosts (F(IS) = 0.015). We discuss the feasibility of developing microsatellites in parasitic nematodes and the problem of null alleles. We also describe a novel 146-bp repeat element, TteREP1, which is linked to two-thirds of the microsatellites sequenced and is associated with marker development failure. The sequence of TteREP1 is related to the TcREP-class of repeats found in several other trichostrongyloid species including Trichostrongylus colubriformis and Haemonchus contortus.


A hitchhikers guide to the Galápagos: co-phylogeography of Galápagos mockingbirds and their parasites.

  • Jan Štefka‎ et al.
  • BMC evolutionary biology‎
  • 2011‎

Parasites are evolutionary hitchhikers whose phylogenies often track the evolutionary history of their hosts. Incongruence in the evolutionary history of closely associated lineages can be explained through a variety of possible events including host switching and host independent speciation. However, in recently diverged lineages stochastic population processes, such as retention of ancestral polymorphism or secondary contact, can also explain discordant genealogies, even in fully co-speciating taxa. The relatively simple biogeographic arrangement of the Galápagos archipelago, compared with mainland biomes, provides a framework to identify stochastic and evolutionary informative components of genealogic data in these recently diverged organisms.


Purging of highly deleterious mutations through severe bottlenecks in Alpine ibex.

  • Christine Grossen‎ et al.
  • Nature communications‎
  • 2020‎

Human activity has caused dramatic population declines in many wild species. The resulting bottlenecks have a profound impact on the genetic makeup of a species with unknown consequences for health. A key genetic factor for species survival is the evolution of deleterious mutation load, but how bottleneck strength and mutation load interact lacks empirical evidence. We analyze 60 complete genomes of six ibex species and the domestic goat. We show that historic bottlenecks rather than the current conservation status predict levels of genome-wide variation. By analyzing the exceptionally well-characterized population bottlenecks of the once nearly extinct Alpine ibex, we find genomic evidence of concurrent purging of highly deleterious mutations but accumulation of mildly deleterious mutations. This suggests that recolonization bottlenecks induced both relaxed selection and purging, thus reshaping the landscape of deleterious mutation load. Our findings highlight that even populations of ~1000 individuals can accumulate mildly deleterious mutations. Conservation efforts should focus on preventing population declines below such levels to ensure long-term survival of species.


Dense sampling of bird diversity increases power of comparative genomics.

  • Shaohong Feng‎ et al.
  • Nature‎
  • 2020‎

Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity1-4. Sparse taxon sampling has previously been proposed to confound phylogenetic inference5, and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: