Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 19 papers out of 19 papers

Identification and replication of the interplay of four genetic high-risk variants for urinary bladder cancer.

  • Silvia Selinski‎ et al.
  • Carcinogenesis‎
  • 2017‎

Little is known whether genetic variants identified in genome-wide association studies interact to increase bladder cancer risk. Recently, we identified two- and three-variant combinations associated with a particular increase of bladder cancer risk in a urinary bladder cancer case-control series (Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), 1501 cases, 1565 controls). In an independent case-control series (Nijmegen Bladder Cancer Study, NBCS, 1468 cases, 1720 controls) we confirmed these two- and three-variant combinations. Pooled analysis of the two studies as discovery group (IfADo-NBCS) resulted in sufficient statistical power to test up to four-variant combinations by a logistic regression approach. The New England and Spanish Bladder Cancer Studies (2080 cases and 2167 controls) were used as a replication series. Twelve previously identified risk variants were considered. The strongest four-variant combination was obtained in never smokers. The combination of rs1014971[AA] near apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3A (APOBEC3A) and chromobox homolog 6 (CBX6), solute carrier family 1s4 (urea transporter), member 1 (Kidd blood group) (SLC14A1) exon single nucleotide polymorphism (SNP) rs1058396[AG, GG], UDP glucuronosyltransferase 1 family, polypeptide A complex locus (UGT1A) intron SNP rs11892031[AA] and rs8102137[CC, CT] near cyclin E1 (CCNE1) resulted in an unadjusted odds ratio (OR) of 2.59 (95% CI = 1.93-3.47; P = 1.87 × 10-10), while the individual variant ORs ranged only between 1.11 and 1.30. The combination replicated in the New England and Spanish Bladder Cancer Studies (ORunadjusted = 1.60, 95% CI = 1.10-2.33; P = 0.013). The four-variant combination is relatively frequent, with 25% in never smoking cases and 11% in never smoking controls (total study group: 19% cases, 14% controls). In conclusion, we show that four high-risk variants can statistically interact to confer increased bladder cancer risk particularly in never smokers.


Large-scale pathway-based analysis of bladder cancer genome-wide association data from five studies of European background.

  • Idan Menashe‎ et al.
  • PloS one‎
  • 2012‎

Pathway analysis of genome-wide association studies (GWAS) offer a unique opportunity to collectively evaluate genetic variants with effects that are too small to be detected individually. We applied a pathway analysis to a bladder cancer GWAS containing data from 3,532 cases and 5,120 controls of European background (n = 5 studies). Thirteen hundred and ninety-nine pathways were drawn from five publicly available resources (Biocarta, Kegg, NCI-PID, HumanCyc, and Reactome), and we constructed 22 additional candidate pathways previously hypothesized to be related to bladder cancer. In total, 1421 pathways, 5647 genes and ∼90,000 SNPs were included in our study. Logistic regression model adjusting for age, sex, study, DNA source, and smoking status was used to assess the marginal trend effect of SNPs on bladder cancer risk. Two complementary pathway-based methods (gene-set enrichment analysis [GSEA], and adapted rank-truncated product [ARTP]) were used to assess the enrichment of association signals within each pathway. Eighteen pathways were detected by either GSEA or ARTP at P≤0.01. To minimize false positives, we used the I(2) statistic to identify SNPs displaying heterogeneous effects across the five studies. After removing these SNPs, seven pathways ('Aromatic amine metabolism' [P(GSEA) = 0.0100, P(ARTP) = 0.0020], 'NAD biosynthesis' [P(GSEA) = 0.0018, P(ARTP) = 0.0086], 'NAD salvage' [P(ARTP) = 0.0068], 'Clathrin derived vesicle budding' [P(ARTP) = 0.0018], 'Lysosome vesicle biogenesis' [P(GSEA) = 0.0023, P(ARTP)<0.00012], 'Retrograde neurotrophin signaling' [P(GSEA) = 0.00840], and 'Mitotic metaphase/anaphase transition' [P(GSEA) = 0.0040]) remained. These pathways seem to belong to three fundamental cellular processes (metabolic detoxification, mitosis, and clathrin-mediated vesicles). Identification of the aromatic amine metabolism pathway provides support for the ability of this approach to identify pathways with established relevance to bladder carcinogenesis.


Large-scale targeted sequencing identifies risk genes for neurodevelopmental disorders.

  • Tianyun Wang‎ et al.
  • Nature communications‎
  • 2020‎

Most genes associated with neurodevelopmental disorders (NDDs) were identified with an excess of de novo mutations (DNMs) but the significance in case-control mutation burden analysis is unestablished. Here, we sequence 63 genes in 16,294 NDD cases and an additional 62 genes in 6,211 NDD cases. By combining these with published data, we assess a total of 125 genes in over 16,000 NDD cases and compare the mutation burden to nonpsychiatric controls from ExAC. We identify 48 genes (25 newly reported) showing significant burden of ultra-rare (MAF < 0.01%) gene-disruptive mutations (FDR 5%), six of which reach family-wise error rate (FWER) significance (p < 1.25E-06). Among these 125 targeted genes, we also reevaluate DNM excess in 17,426 NDD trios with 6,499 new autism trios. We identify 90 genes enriched for DNMs (FDR 5%; e.g., GABRG2 and UIMC1); of which, 61 reach FWER significance (p < 3.64E-07; e.g., CASZ1). In addition to doubling the number of patients for many NDD risk genes, we present phenotype-genotype correlations for seven risk genes (CTCF, HNRNPU, KCNQ3, ZBTB18, TCF12, SPEN, and LEO1) based on this large-scale targeted sequencing effort.


Metagenomic Identification of Microbial Signatures Predicting Pancreatic Cancer From a Multinational Study.

  • Naoyoshi Nagata‎ et al.
  • Gastroenterology‎
  • 2022‎

To identify gut and oral metagenomic signatures that accurately predict pancreatic ductal carcinoma (PDAC) and to validate these signatures in independent cohorts.


Gene-specific facial dysmorphism in Axenfeld-Rieger syndrome caused by FOXC1 and PITX2 variants.

  • Emmanuelle Souzeau‎ et al.
  • American journal of medical genetics. Part A‎
  • 2021‎

Axenfeld-Rieger syndrome is a genetic condition characterized by ocular and systemic features and is most commonly caused by variants in the FOXC1 or PITX2 genes. Facial dysmorphism is part of the syndrome but the differences between both genes have never been systematically assessed. Here, 11 facial traits commonly reported in Axenfeld-Rieger syndrome were assessed by five clinical geneticists blinded to the molecular diagnosis. Individuals were drawn from the Australian and New Zealand Registry of Advanced Glaucoma in Australia or recruited through the Genetic and Ophthalmology Unit of l'Azienda Socio-Sanitaria Territoriale Grande Ospedale Metropolitano Niguarda in Italy. Thirty-four individuals from 18 families were included. FOXC1 variants were present in 64.7% of individuals and PITX2 variants in 35.3% of individuals. A thin upper lip (55.9%) and a prominent forehead (41.2%) were common facial features shared between both genes. Hypertelorism/telecanthus (81.8% vs 25.0%, p = 0.002) and low-set ears (31.8% vs 0.0%, p = 0.036) were significantly more prevalent in individuals with FOXC1 variants compared with PITX2 variants. These findings may assist clinicians in reaching correct clinical and molecular diagnoses, and providing appropriate genetic counseling.


A combination of urinary biomarker panel and PancRISK score for earlier detection of pancreatic cancer: A case-control study.

  • Silvana Debernardi‎ et al.
  • PLoS medicine‎
  • 2020‎

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, with around 9% of patients surviving >5 years. Asymptomatic in its initial stages, PDAC is mostly diagnosed late, when already a locally advanced or metastatic disease, as there are no useful biomarkers for detection in its early stages, when surgery can be curative. We have previously described a promising biomarker panel (LYVE1, REG1A, and TFF1) for earlier detection of PDAC in urine. Here, we aimed to establish the accuracy of an improved panel, including REG1B instead of REG1A, and an algorithm for data interpretation, the PancRISK score, in additional retrospectively collected urine specimens. We also assessed the complementarity of this panel with CA19-9 and explored the daily variation and stability of the biomarkers and their performance in common urinary tract cancers.


Polymorphisms in GSTT1, GSTZ1, and CYP2E1, disinfection by-products, and risk of bladder cancer in Spain.

  • Kenneth P Cantor‎ et al.
  • Environmental health perspectives‎
  • 2010‎

Bladder cancer has been linked with long-term exposure to disinfection by-products (DBPs) in drinking water.


Risk prediction scores for recurrence and progression of non-muscle invasive bladder cancer: an international validation in primary tumours.

  • Moniek M Vedder‎ et al.
  • PloS one‎
  • 2014‎

We aimed to determine the validity of two risk scores for patients with non-muscle invasive bladder cancer in different European settings, in patients with primary tumours.


An epistatic interaction between the PAX8 and STK17B genes in papillary thyroid cancer susceptibility.

  • Iñigo Landa‎ et al.
  • PloS one‎
  • 2013‎

Papillary Thyroid Cancer (PTC) is a heterogeneous and complex disease; susceptibility to PTC is influenced by the joint effects of multiple common, low-penetrance genes, although relatively few have been identified to date. Here we applied a rigorous combined approach to assess both the individual and epistatic contributions of genetic factors to PTC susceptibility, based on one of the largest series of thyroid cancer cases described to date. In addition to identifying the involvement of TSHR variation in classic PTC, our pioneer study of epistasis revealed a significant interaction between variants in STK17B and PAX8. The interaction was detected by MD-MBR (p = 0.00010) and confirmed by other methods, and then replicated in a second independent series of patients (MD-MBR p = 0.017). Furthermore, we demonstrated an inverse correlation between expression of PAX8 and STK17B in a set of cell lines derived from human thyroid carcinomas. Overall, our work sheds additional light on the genetic basis of thyroid cancer susceptibility, and suggests a new direction for the exploration of the inherited genetic contribution to disease using association studies.


Genome-wide association study identifies two susceptibility loci for osteosarcoma.

  • Sharon A Savage‎ et al.
  • Nature genetics‎
  • 2013‎

Osteosarcoma is the most common primary bone malignancy of adolescents and young adults. To better understand the genetic etiology of osteosarcoma, we performed a multistage genome-wide association study consisting of 941 individuals with osteosarcoma (cases) and 3,291 cancer-free adult controls of European ancestry. Two loci achieved genome-wide significance: a locus in the GRM4 gene at 6p21.3 (encoding glutamate receptor metabotropic 4; rs1906953; P = 8.1 × 10⁻⁹) and a locus in the gene desert at 2p25.2 (rs7591996 and rs10208273; P = 1.0 × 10⁻⁸ and 2.9 × 10⁻⁷, respectively). These two loci warrant further exploration to uncover the biological mechanisms underlying susceptibility to osteosarcoma.


Characterization of large structural genetic mosaicism in human autosomes.

  • Mitchell J Machiela‎ et al.
  • American journal of human genetics‎
  • 2015‎

Analyses of genome-wide association study (GWAS) data have revealed that detectable genetic mosaicism involving large (>2 Mb) structural autosomal alterations occurs in a fraction of individuals. We present results for a set of 24,849 genotyped individuals (total GWAS set II [TGSII]) in whom 341 large autosomal abnormalities were observed in 168 (0.68%) individuals. Merging data from the new TGSII set with data from two prior reports (the Gene-Environment Association Studies and the total GWAS set I) generated a large dataset of 127,179 individuals; we then conducted a meta-analysis to investigate the patterns of detectable autosomal mosaicism (n = 1,315 events in 925 [0.73%] individuals). Restricting to events >2 Mb in size, we observed an increase in event frequency as event size decreased. The combined results underscore that the rate of detectable mosaicism increases with age (p value = 5.5 × 10(-31)) and is higher in men (p value = 0.002) but lower in participants of African ancestry (p value = 0.003). In a subset of 47 individuals from whom serial samples were collected up to 6 years apart, complex changes were noted over time and showed an overall increase in the proportion of mosaic cells as age increased. Our large combined sample allowed for a unique ability to characterize detectable genetic mosaicism involving large structural events and strengthens the emerging evidence of non-random erosion of the genome in the aging population.


Genome-Wide Association Study Data Reveal Genetic Susceptibility to Chronic Inflammatory Intestinal Diseases and Pancreatic Ductal Adenocarcinoma Risk.

  • Fangcheng Yuan‎ et al.
  • Cancer research‎
  • 2020‎

Registry-based epidemiologic studies suggest associations between chronic inflammatory intestinal diseases and pancreatic ductal adenocarcinoma (PDAC). As genetic susceptibility contributes to a large proportion of chronic inflammatory intestinal diseases, we hypothesize that the genomic regions surrounding established genome-wide associated variants for these chronic inflammatory diseases are associated with PDAC. We examined the association between PDAC and genomic regions (±500 kb) surrounding established common susceptibility variants for ulcerative colitis, Crohn's disease, inflammatory bowel disease, celiac disease, chronic pancreatitis, and primary sclerosing cholangitis. We analyzed summary statistics from genome-wide association studies data for 8,384 cases and 11,955 controls of European descent from two large consortium studies using the summary data-based adaptive rank truncated product method to examine the overall association of combined genomic regions for each inflammatory disease group. Combined genomic susceptibility regions for ulcerative colitis, Crohn disease, inflammatory bowel disease, and chronic pancreatitis were associated with PDAC at P values < 0.05 (0.0040, 0.0057, 0.011, and 3.4 × 10-6, respectively). After excluding the 20 PDAC susceptibility regions (±500 kb) previously identified by GWAS, the genomic regions for ulcerative colitis, Crohn disease, and inflammatory bowel disease remained associated with PDAC (P = 0.0029, 0.0057, and 0.0098, respectively). Genomic regions for celiac disease (P = 0.22) and primary sclerosing cholangitis (P = 0.078) were not associated with PDAC. Our results support the hypothesis that genomic regions surrounding variants associated with inflammatory intestinal diseases, particularly, ulcerative colitis, Crohn disease, inflammatory bowel disease, and chronic pancreatitis are associated with PDAC. SIGNIFICANCE: The joint effects of common variants in genomic regions containing susceptibility loci for inflammatory bowel disease and chronic pancreatitis are associated with PDAC and may provide insights to understanding pancreatic cancer etiology.


Extreme downregulation of chromosome Y and Alzheimer's disease in men.

  • Alejandro Caceres‎ et al.
  • Neurobiology of aging‎
  • 2020‎

Research has revealed scarcely any biological factors of Alzheimer's disease (AD) that are specific to men. Here, we found that the extreme downregulation of chromosome Y (EDY) increases the age-related risk of AD in men. We considered that EDY was a possible male-specific pathway toward AD because EDY is the most likely consequence of the mosaic loss of chromosome Y, which has been recently associated with AD. We studied EDY in the undiseased brain of 371 individuals and observed that it co-occurred across multiple brain regions (p < 10-4) and associated with rs114241159 (p = 1.53 × 10-7) within ACSS3/PPFIA2, previously linked to amyloid beta concentrations. We also analyzed the 5 largest transcriptomic case-control studies, publicly available to date on AD (cases/controls = 556/462) and found a significant interaction with age (OREDY × age = 1.22, p = 0.0038). Our analyses suggest that aging men who live longer by avoiding EDY are more resilient to AD than those who do not.


Mosaic loss of chromosome Y is associated with common variation near TCL1A.

  • Weiyin Zhou‎ et al.
  • Nature genetics‎
  • 2016‎

Mosaic loss of chromosome Y (mLOY) leading to gonosomal XY/XO commonly occurs during aging, particularly in smokers. We investigated whether mLOY was associated with non-hematological cancer in three prospective cohorts (8,679 cancer cases and 5,110 cancer-free controls) and genetic susceptibility to mLOY. Overall, mLOY was observed in 7% of men, and its prevalence increased with age (per-year odds ratio (OR) = 1.13, 95% confidence interval (CI) = 1.12-1.15; P < 2 × 10(-16)), reaching 18.7% among men over 80 years old. mLOY was associated with current smoking (OR = 2.35, 95% CI = 1.82-3.03; P = 5.55 × 10(-11)), but the association weakened with years after cessation. mLOY was not consistently associated with overall or specific cancer risk (for example, bladder, lung or prostate cancer) nor with cancer survival after diagnosis (multivariate-adjusted hazard ratio = 0.87, 95% CI = 0.73-1.04; P = 0.12). In a genome-wide association study, we observed the first example of a common susceptibility locus for genetic mosaicism, specifically mLOY, which maps to TCL1A at 14q32.13, marked by rs2887399 (OR = 1.55, 95% CI = 1.36-1.78; P = 1.37 × 10(-10)).


A multi-stage genome-wide association study of bladder cancer identifies multiple susceptibility loci.

  • Nathaniel Rothman‎ et al.
  • Nature genetics‎
  • 2010‎

We conducted a multi-stage, genome-wide association study of bladder cancer with a primary scan of 591,637 SNPs in 3,532 affected individuals (cases) and 5,120 controls of European descent from five studies followed by a replication strategy, which included 8,382 cases and 48,275 controls from 16 studies. In a combined analysis, we identified three new regions associated with bladder cancer on chromosomes 22q13.1, 19q12 and 2q37.1: rs1014971, (P = 8 × 10⁻¹²) maps to a non-genic region of chromosome 22q13.1, rs8102137 (P = 2 × 10⁻¹¹) on 19q12 maps to CCNE1 and rs11892031 (P = 1 × 10⁻⁷) maps to the UGT1A cluster on 2q37.1. We confirmed four previously identified genome-wide associations on chromosomes 3q28, 4p16.3, 8q24.21 and 8q24.3, validated previous candidate associations for the GSTM1 deletion (P = 4 × 10⁻¹¹) and a tag SNP for NAT2 acetylation status (P = 4 × 10⁻¹¹), and found interactions with smoking in both regions. Our findings on common variants associated with bladder cancer risk should provide new insights into the mechanisms of carcinogenesis.


Female chromosome X mosaicism is age-related and preferentially affects the inactivated X chromosome.

  • Mitchell J Machiela‎ et al.
  • Nature communications‎
  • 2016‎

To investigate large structural clonal mosaicism of chromosome X, we analysed the SNP microarray intensity data of 38,303 women from cancer genome-wide association studies (20,878 cases and 17,425 controls) and detected 124 mosaic X events >2 Mb in 97 (0.25%) women. Here we show rates for X-chromosome mosaicism are four times higher than mean autosomal rates; X mosaic events more often include the entire chromosome and participants with X events more likely harbour autosomal mosaic events. X mosaicism frequency increases with age (0.11% in 50-year olds; 0.45% in 75-year olds), as reported for Y and autosomes. Methylation array analyses of 33 women with X mosaicism indicate events preferentially involve the inactive X chromosome. Our results provide further evidence that the sex chromosomes undergo mosaic events more frequently than autosomes, which could have implications for understanding the underlying mechanisms of mosaic events and their possible contribution to risk for chronic diseases.


A faecal microbiota signature with high specificity for pancreatic cancer.

  • Ece Kartal‎ et al.
  • Gut‎
  • 2022‎

Recent evidence suggests a role for the microbiome in pancreatic ductal adenocarcinoma (PDAC) aetiology and progression.


Somatic Mutation Profiling in the Liquid Biopsy and Clinical Analysis of Hereditary and Familial Pancreatic Cancer Cases Reveals KRAS Negativity and a Longer Overall Survival.

  • Julie Earl‎ et al.
  • Cancers‎
  • 2021‎

Pancreatic ductal adenocarcinoma (PDAC) presents many challenges in the clinic and there are many areas for improvement in diagnostics and patient management. The five-year survival rate is around 7.2% as the majority of patients present with advanced disease at diagnosis that is treatment resistant. Approximately 10-15% of PDAC cases have a hereditary basis or Familial Pancreatic Cancer (FPC). Here we demonstrate the use of circulating free DNA (cfDNA) in plasma as a prognostic biomarker in PDAC. The levels of cfDNA correlated with disease status, disease stage, and overall survival. Furthermore, we show for the first time via BEAMing that the majority of hereditary or familial PDAC cases (around 84%) are negative for a KRAS somatic mutation. In addition, KRAS mutation negative cases harbor somatic mutations in potentially druggable genes such as KIT, PDGFR, MET, BRAF, and PIK3CA that could be exploited in the clinic. Finally, familial or hereditary cases have a longer overall survival compared to sporadic cases (10.2 vs. 21.7 months, respectively). Currently, all patients are treated the same in the clinic with cytotoxic agents, although here we demonstrate that there are different subtypes of tumors at the genetic level that could pave the way to personalized treatment.


Genome-wide association study identifies inversion in the CTRB1-CTRB2 locus to modify risk for alcoholic and non-alcoholic chronic pancreatitis.

  • Jonas Rosendahl‎ et al.
  • Gut‎
  • 2018‎

Alcohol-related pancreatitis is associated with a disproportionately large number of hospitalisations among GI disorders. Despite its clinical importance, genetic susceptibility to alcoholic chronic pancreatitis (CP) is poorly characterised. To identify risk genes for alcoholic CP and to evaluate their relevance in non-alcoholic CP, we performed a genome-wide association study and functional characterisation of a new pancreatitis locus.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: