Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 5 papers out of 5 papers

Effects of l-Serine on Macrolide Resistance in Streptococcus suis.

  • Tong Wu‎ et al.
  • Microbiology spectrum‎
  • 2022‎

Streptococcus suis is an important zoonotic pathogen. Due to the indiscriminate use of macrolides, S. suis has developed a high level of drug resistance, which has led to a serious threat to human and animal health. However, it takes a long time to develop new antibacterial drugs. Therefore, we consider the perspective of bacterial physiological metabolism to ensure that the development of bacterial resistance to existing drugs is alleviated and bacterial susceptibility to drugs is restored. In the present study, an untargeted metabolomics analysis showed that the serine catabolic pathway was inhibited in drug-resistant S. suis. The addition of l-serine restored the fungicidal effect of macrolides on S. suis in vivo and in vitro by enhancing the serine metabolic pathway. Further studies showed that l-serine, stimulated by its serine catabolic pathway, inhibited intracellular H2S production, reduced Fe-S cluster production, and restored the normal occurrence of the Fenton reaction in cells. It also attenuated the production of glutathione, an important marker of the intracellular oxidation-reduction reaction. All these phenomena eventually contribute to an increase in the level of reactive oxygen species, which leads to intracellular DNA damage and bacterial death. Our study provides a potential new approach for the treatment of diseases caused by drug-resistant S. suis. IMPORTANCE The emergence of antimicrobial resistance is a global challenge. However, new drug development efforts consume considerable resources and time, and alleviating the pressure on existing drugs is the focus of our work. We investigated the mechanism of action of l-serine supplementation in restoring the use of macrolides in S. suis, based on the role of the serine catabolic pathway on reactive oxygen species levels and oxidative stress in S. suis. This pathway provides a theoretical basis for the rational use of macrolides in clinical practice and also identifies a possible target for restoring drug sensitivity in S. suis.


Porphyromonas gingivalis Outer Membrane Vesicles Promote Apoptosis via msRNA-Regulated DNA Methylation in Periodontitis.

  • Ruyi Fan‎ et al.
  • Microbiology spectrum‎
  • 2023‎

The outer membrane vesicles (OMVs) produced by Porphyromonas gingivalis contain a variety of bioactive molecules that may be involved in the progression of periodontitis. However, the participation of P. gingivalis OMVs in the development of periodontitis has not been elucidated. Here, we isolated P. gingivalis OMVs and confirmed their participation in periodontitis both in vivo and in vitro. Microcomputed tomography (micro-CT) and histological analysis showed that under stimulation with P. gingivalis OMVs, the alveolar bone of rats was significantly resorbed in vivo. We found that P. gingivalis OMVs were taken up by human periodontal ligament cells ([hPDLCs]) in vitro, which subsequently resulted in apoptosis and inflammatory cytokine release, which was accomplished by the microRNA-size small RNA (msRNA) sRNA45033 in the P. gingivalis OMVs. Through bioinformatics analysis and screening of target genes, chromobox 5 (CBX5) was identified as the downstream target of screened-out sRNA45033. Using a dual-luciferase reporter assay, overexpression, and knockdown methods, sRNA45033 was confirmed to target CBX5 to regulate hPDLC apoptosis. In addition, CUT&Tag (cleavage under targets and tagmentation) analysis confirmed the mechanism that CBX5 regulates apoptosis through the methylation of p53 DNA. Collectively, these findings indicate that the role of P. gingivalis OMVs is immunologically relevant and related to bacterial virulence during the development of periodontitis. IMPORTANCE P. gingivalis is a bacterium often associated with periodontitis. This study demonstrates that (i) sRNA45033 in P. gingivalis OMVs targets CBX5, (ii) CBX5 regulates the methylation of p53 DNA and its expression, which is associated with apoptosis, and (iii) a novel mechanism of interaction between hosts and pathogens is mediated by OMVs in the occurrence of periodontitis.


High-Throughput Mutagenesis Reveals a Role for Antimicrobial Resistance- and Virulence-Associated Mobile Genetic Elements in Staphylococcus aureus Host Adaptation.

  • Xiaoliang Ba‎ et al.
  • Microbiology spectrum‎
  • 2023‎

Methicillin-resistant Staphylococcus aureus (MRSA) clonal-complex 398 (CC398) is the dominant livestock-associated (LA) MRSA lineage in European livestock and an increasing cause of difficult-to-treat human disease. LA-CC398 MRSA evolved from a diverse human-associated methicillin-sensitive population, and this transition from humans to livestock was associated with three mobile genetic elements (MGEs). In this study, we apply transposon-directed insertion site sequencing (TraDIS), a high-throughput transposon mutagenesis approach, to investigate genetic signatures that contribute to LA-CC398 causing disease in humans. We identified 26 genes associated with LA-CC398 survival in human blood and 47 genes in porcine blood. We carried out phylogenetic reconstruction on 1,180 CC398 isolates to investigate the genetic context of all identified genes. We found that all genes associated with survival in human blood were part of the CC398 core genome, while 2/47 genes essential for survival in porcine blood were located on MGEs. Gene SAPIG0966 was located on the previously identified Tn916 transposon carrying a tetracycline resistance gene, which has been shown to be stably inherited within LA-CC398. Gene SAPIG1525 was carried on a phage element, which in part, matched phiSa2wa_st1, a previously identified bacteriophage carrying the Panton-Valentine leucocidin (PVL) virulence factor. Gene deletion mutants constructed in two LA-CC398 strains confirmed that the SAPIG0966 carrying Tn916 and SAPIG1525 were important for CC398 survival in porcine blood. Our study shows that MGEs that carry antimicrobial resistance and virulence genes could have a secondary function in bacterial survival in blood and may be important for host adaptation. IMPORTANCE CC398 is the dominant type of methicillin-resistant Staphylococcus aureus (MRSA) in European livestock and a growing cause of human infections. Previous studies have suggested MRSA CC398 evolved from human-associated methicillin-sensitive Staphylococcus aureus and is capable of rapidly readapting to human hosts while maintaining antibiotic resistance. Using high-throughput transposon mutagenesis, our study identified 26 and 47 genes important for MRSA CC398 survival in human and porcine blood, respectively. Two of the genes important for MRSA CC398 survival in porcine blood were located on mobile genetic elements (MGEs) carrying resistance or virulence genes. Our study shows that these MGEs carrying antimicrobial resistance and virulence genes could have a secondary function in bacterial survival in blood and may be important for blood infection and host adaptation.


Spontaneous mutational patterns and novel mutations for bedaquiline and clofazimine resistance in Mycobacterium tuberculosis.

  • Jin Shi‎ et al.
  • Microbiology spectrum‎
  • 2023‎

The 2022 World Health Organization guidelines recommend use of two core anti-tuberculosis (TB) drugs, bedaquiline (BDQ) and clofazimine (CFZ), for treatment of drug-resistant (DR)-TB. However, several mutated Mycobacterium tuberculosis (MTB) genes, conferring BDQ and CFZ resistance, have been reported that predominantly arose from sporadic mutations that have not been comprehensively characterized. Herein, MTB clinical isolates collected from drug-susceptible (DS)-, multidrug-resistant (MDR)-, and extensively drug-resistant (XDR)-TB patients were cultured in vitro with BDQ or CFZ to generate progeny strains with resistance to these drugs. Progeny strains exposed to CFZ exhibited increased CFZ minimum inhibitory concentrations (MICs) that exceeded MIC increases of BDQ-exposed progeny strains. Notably, mmpR and pepQ mutations accounted for 83% and 17% of BDQ-induced spontaneous gene mutations, respectively, and 86% and 14% of CFZ-induced spontaneous gene mutations, respectively. Analyses of predicted mutation-induced changes in amino acid sequences and structures of MmpR and PepQ mutants revealed several point mutations affected sequence conversation and functionality as an underlying mechanism for observed acquired BDQ/CFZ resistance. Moreover, our results revealed differences in patterns of BDQ- and CFZ-induced acquired spontaneous mutations that may enhance our understanding of MTB BDQ/CFZ-resistance mechanisms. IMPORTANCE This study of MTB drug resistance mechanisms revealed patterns of spontaneous MTB mutations associated with acquired BDQ and CFZ resistance that arose after clinical MTB isolates were cultured in vitro with BDQ or CFZ. Results of protein sequence and structural analyses provided insights into potential mechanisms underlying associations between MTB gene mutations and DR phenotypes. Taken together, these results revealed differences in acquired BDQ and CFZ resistance mechanisms as a new perspective that may enhance our understanding of BDQ/CFZ resistance mechanisms and facilitate the development of new methods for detecting MTB drug resistance genes.


Cec4-Derived Peptide Inhibits Planktonic and Biofilm-Associated Methicillin Resistant Staphylococcus epidermidis.

  • Chengju Mao‎ et al.
  • Microbiology spectrum‎
  • 2022‎

Staphylococcus epidermidis is part of the normal microbiota that colonizes the skin and mucosal surfaces of human beings. Previous studies suggested that S. epidermidis possessed low virulence, but recent studies confirmed that it can acquire high virulence from Staphylococcus aureus and with the increasing detection of methicillin-resistant S. epidermidis. It has become a major pathogen of graft-associated and hospital-acquired infections. In previous studies, we modified the antimicrobial peptide Cec4 (41 amino acids) and obtained the derived peptide C9 (16 amino acids) showing better antimicrobial activity against S. epidermidis with an MIC value of 8 μg/mL. The peptide has rapid bactericidal activity without detectable high-level resistance, showing certain inhibition and eradication ability on S. epidermidis biofilms. The damage of cell membrane structures by C9 was observed by scanning emission microscopy (SEM) and transmission electron microscopy (TEM). In addition, C9 altered the S. epidermidis cell membrane permeability, depolarization levels, fluidity, and reactive oxygen species (ROS) accumulation and possessed the ability to bind genomic DNA. Analysis of the transcriptional profiles of C9-treated cells revealed changes in genes involved in cell wall and ribosome biosynthesis, membrane protein transport, oxidative stress, and DNA transcription regulation. At the same time, the median lethal dose of C9 in mice was more than 128 mg/kg, and the intraperitoneal administration of 64 mg/kg was less toxic to the liver and kidneys of mice. Furthermore, C9 also showed a certain therapeutic effect on the mouse bacteremia model. In conclusion, C9 may be a candidate drug against S. epidermidis, which has the potential to be further developed as an antibacterial therapeutic agent. IMPORTANCE S. epidermidis is one of the most important pathogens of graft-related infection and hospital-acquired infection. The growing problem of antibiotic resistance, as well as the emergence of bacterial pathogenicity, highlights the need for antimicrobials with new modes of action. Antimicrobial peptides have been extensively studied over the past 30 years as ideal alternatives to antibiotics, and we report here that the derived peptide C9 is characterized by rapid bactericidal and antibiofilm activity, avoiding the development of resistance by acting on multiple nonspecific targets of the cell membrane or cell components. In addition, it has therapeutic potential against S. epidermidis infection in vivo. This study provides a rationale for the further development and application of C9 as an effective candidate antibiotic.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: