Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 6 papers out of 6 papers

Protein phosphatase 2A catalytic subunit α (PP2Acα) maintains survival of committed erythroid cells in fetal liver erythropoiesis through the STAT5 pathway.

  • Weiqian Chen‎ et al.
  • The American journal of pathology‎
  • 2011‎

Suppression of programmed cell death is critical for the final maturation of red blood cells and depends largely on the anti-apoptotic effects of EpoR-STAT5-Bcl-x(L) signaling. As the major eukaryotic serine/threonine phosphatase, protein phosphatase 2A (PP2A) regulates multiple cellular processes, including apoptosis. However, whether PP2A plays a role in preventing erythroid cells from undergoing apoptosis remains to be elucidated. We conditionally inactivated the catalytic subunit α of PP2A (PP2Acα), which is the predominant form of PP2Ac, during early embryonic hematopoiesis. Loss of PP2Acα in hematopoietic cells perturbed definitive erythropoiesis characterized by fetal liver atrophy, reduced Ter119(+) cell number, abnormal expression patterns of molecular markers, less colony formation, and a reduction in definitive globin expression. Levels of erythropoiesis-promoting cytokines and initial seeding with hematopoietic progenitors remained unchanged in PP2Acα(TKO) fetal livers. We noted impaired expansion of the fetal erythroid compartment, which was associated with increased apoptosis of committed erythroid cells. Mechanistically, PP2Acα depletion markedly reduced Tyr(694) phosphorylation of STAT5 and expression of Bcl-x(L). Unexpectedly, PP2Acα-deficient embryos did not manifest any early embryonic vascular defects. Collectively, these data provide direct loss-of-function evidence demonstrating the importance of PP2Acα for the survival of committed erythroid cells during fetal liver erythropoiesis.


Gastric Bypass Surgery Reverses Diabetic Phenotypes in Bdnf-Deficient Mice.

  • Shujun Jiang‎ et al.
  • The American journal of pathology‎
  • 2016‎

Duodenum-jejunum gastric bypass (DJB) has been used to treat morbid diabetic patients. However, neither the suitability among patients nor the mechanisms of this surgical treatment is clear. Previously, we reported a new mouse strain named Timo as type 2 diabetes model caused by brain-derived neurotrophic factor (Bdnf) deficiency. In this study, we found that DJB on Timo mice reversed their metabolic abnormalities without altering the expression of Bdnf. Glucose tolerance and insulin sensitivity were improved greatly, along with reduction of fat accumulation in liver and white adipose tissue. The gut flora population was altered by DJB with increased proportion of Firmicutes and decreased Actinobacteria and Proteobacteria in the ileum after surgery. Systemic inflammation in Timo mice was greatly suppressed with less macrophage infiltration and lower tumor necrosis factor-α levels in liver and white adipose tissue after surgery. Interestingly, the alteration of gut microflora abundance and improved metabolism preceded the inflammation alleviation after DJB surgery. These results suggested that DJB can reverse Bdnf deficiency-associated metabolic abnormality. In addition, the reduced inflammation may not be the initial cause for the DJB-associated metabolic and microbiota alterations. The increased BDNF protein levels in hypothalamus and hippocampus may result from microbiota change after DJB surgery.


The mutation in Chd7 causes misexpression of Bmp4 and developmental defects in telencephalic midline.

  • Xuan Jiang‎ et al.
  • The American journal of pathology‎
  • 2012‎

Mutations in chromosome-helicase-DNA-binding protein 7 (CHD7) are identified as the main cause for CHARGE syndrome (coloboma, heart anomaly, choanal atresia, retardation, genital and ear anomalies). Most patients (55% to 85%) with CHARGE syndrome display developmental defects in the central nervous system (CNS), of which pathology and molecular mechanisms remain unclear. In this study, we report a novel mutant mouse strain carrying a nonsense mutation, COA1, in exon4 of Chd7 gene. Chd7(COA1/+) mice phenocopied human CHARGE syndrome and displayed developmental defects in the telencephalic midline, including dilated third and lateral ventricles, reduced cerebral cortex, and corpus callosum crossing failure. Programed cell death in the telencephalic midline zone of Chd7(COA1/+) embryos was impaired, consistent with the incomplete telencephalic medial invagination in Chd7(COA1/+) embryos. Interestingly, expression of Bmp4, a signal well known to induce forebrain midline cell fate and apoptosis, was down-regulated and also expanded in the forebrain of Chd7(COA1/+) embryos. Furthermore, in vitro studies suggested that CHD7 may directly regulate Bmp4 expression by binding with an enhancer element downstream of the Bmp4 locus. These studies provide novel insight into pathogenesis of CNS anomalies in CHARGE syndrome.


Gsdma3 mutation causes bulge stem cell depletion and alopecia mediated by skin inflammation.

  • Yue Zhou‎ et al.
  • The American journal of pathology‎
  • 2012‎

Primary cicatricial alopecias (PCAs) are a group of permanent hair loss disorders, of which the pathogenesis is still poorly understood. The alopecia and excoriation (AE) mouse strain is a dominant mutant generated from ethyl nitrosourea mutagenesis. AE mice exhibit a progressive alopecia phenotype similar to that seen in PCAs, resulting from a point mutation in the gasdermin A3 gene. Mutant mice begin to show alopecia on the head from postnatal day 22 and experience complete hair loss by the age of 6 months, along with hyperkeratosis and catagen delay. The results of a histological examination showed that bulge stem cells in AE skin are gradually depleted, as indicated by decreased keratin 15 and CD34 expression, and reduced bromodeoxyuridine label-retaining cells in the AE bulge. In addition, AE mice display an inflammatory condition in the skin from postnatal day 7, including elevated tumor necrosis factor-α and monocyte chemotactic protein-1 mRNA levels and significantly increased macrophages and dendritic cell number. Immune privilege in the bulge was also compromised in AE skin. Consistently, after treatment with the immunosuppressive agent, cyclosporine A, immune privilege collapse, stem cell destruction, and alopecia phenotype of AE mice were all rescued. Collectively, our data demonstrate that immune-mediated destruction of bulge stem cells plays a crucial role in the pathogenesis of alopecia in AE mice, and this strain might be an interesting model for PCAs, especially for lichen planopilaris.


Multiple microvascular alterations in pancreatic islets and neuroendocrine tumors of a Men1 mouse model.

  • Xia Chu‎ et al.
  • The American journal of pathology‎
  • 2013‎

Vascular therapeutic targeting requires thorough evaluation of the mechanisms activated in the specific context of each particular tumor type. We highlight structural, molecular, and functional microvascular aberrations contributing to development and maintenance of pancreatic neuroendocrine tumors (NETs), with special reference to multiple endocrine neoplasia 1 (MEN1) syndrome, using a Men1 mouse model. Tissue samples were analyzed by immunofluorescence to detect vessel density and pericyte distribution within the endocrine pancreas; expression of angiogenic factors was assessed by immunohistochemistry and quantitative real-time PCR in isolated islets and adenomas cultured under normoxic or hypoxic conditions. The increased vascular density of pancreatic NETs developed in Men1 mice was paralleled by an early and extensive redistribution of pericytes within endocrine tissue. These morphological alterations are supported by, and in some cases preceded by, fine-tuned variations in expression of several angiogenic regulators and are further potentiated by hypoxia. By combining two novel ex vivo and in vivo single-islet and tumor perfusion techniques, we demonstrated that both vascular reactivity and blood perfusion of tumor arterioles are significantly altered in response to glucose and L-nitro-arginine methyl ester. Our findings unravel multiple potential molecular and physiological targets differentially activated in the endocrine pancreas of Men1 mice and highlight the need for in-depth functional studies to fully understand the contribution of each component to development of pancreatic NETs in MEN1 syndrome.


Haploinsufficiency of hnRNP U Changes Activity Pattern and Metabolic Rhythms.

  • Beibei Lai‎ et al.
  • The American journal of pathology‎
  • 2018‎

The neuropeptides arginine vasopressin (Avp) and vasoactive intestinal polypeptide (Vip) are critical for the communication and coupling of suprachiasmatic nucleus neurons, which organize daily rhythms of physiology and behavior in mammals. However, how these peptides are regulated remains uncharacterized. We found that heterogeneous nuclear ribonucleoprotein U (hnRNP U) is essential for the expression of Avp and Vip. Loss of one copy of the Hnrnpu gene resulted in fragmented locomotor activities and disrupted metabolic rhythms. Hnrnpu+/- mice were more active than wild-type mice in the daytime but more inactive at night. These phenotypes were partially rescued by microinfusion of Avp and Vip into free-moving animals. In addition, hnRNP U modulated Avp and Vip via directly binding to their promoters together with brain and muscle Arnt-like protein-1/circadian locomotor output cycles kaput heterodimers. Our work identifies hnRNP U as a novel regulator of the circadian pacemaker and provides new insights into the mechanism of rhythm output.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: