Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 73 papers

Toll-like receptor 4 is not involved in host defense against respiratory tract infection with Sendai virus.

  • Koenraad F van der Sluijs‎ et al.
  • Immunology letters‎
  • 2003‎

Toll-like receptors (TLR) induce innate immune responses upon stimulation by a wide variety of pathogens. TLR4 has been implicated in innate immunity against respiratory syncytial virus (RSV) by an interaction with the viral envelope fusion (F) protein. Sendai virus (mouse parainfluenza type 1) shares many features with RSV, including a structurally and functionally similar F protein. To determine the role of TLR4 in host defense against Sendai virus respiratory tract infection, TLR4 mutant and wildtype mice were intranasally infected with Sendai virus. Sendai infection resulted in an increase in viral RNA copies in lung homogenates peaking on day 4. Pulmonary viral loads, histopathology, cytokine levels and leukocyte influx were similar in TLR4 mutant and wildtype mice. In spite of the structural similarities shared by the F proteins of Sendai virus and RSV, TLR4 is not involved in host defense against respiratory tract infection with Sendai virus.


CD44 deficiency is associated with increased bacterial clearance but enhanced lung inflammation during Gram-negative pneumonia.

  • Gerritje J W van der Windt‎ et al.
  • The American journal of pathology‎
  • 2010‎

Klebsiella pneumoniae is a frequently isolated causative pathogen in respiratory tract infections. CD44 is a transmembrane adhesion molecule that has been implicated in several immunological processes. To determine the role of CD44 during Klebsiella pneumonia, we intranasally infected wild-type and CD44 knockout (KO) mice with 10(2) to 10(4) colony-forming units of K. pneumoniae or administered Klebsiella lipopolysaccharide. During lethal infection, CD44 deficiency was associated with reduced bacterial growth and dissemination accompanied by enhanced pulmonary inflammation. After infection with lower Klebsiella doses, CD44 KO mice but not wild-type mice demonstrated mortality. After infection with even lower bacterial doses, which were cleared by most mice of both strains, CD44 KO mice displayed enhanced lung inflammation 4 and 10 days postinfection, indicating that CD44 is important for the resolution of pulmonary inflammation after nonlethal pneumonia. In accordance, CD44 KO mice showed a diminished resolution of lung inflammation 4 days after intrapulmonary delivery of lipopolysaccharide. CD44 deficiency was associated with the accumulation of hyaluronan together with reduced gene expression levels of the negative regulators of Toll-like receptor signaling, interleukin-1R-associated kinase M, A20, and suppressor of cytokine signaling 3. In conclusion, the absence of CD44 affects various components and phases of the host response during Klebsiella pneumonia, reducing bacterial outgrowth and dissemination and enhancing pulmonary pathology during lethal infection, and diminishing the resolution of lung inflammation during sublethal infection.


S100A8/A9 is not involved in host defense against murine urinary tract infection.

  • Mark C Dessing‎ et al.
  • PloS one‎
  • 2010‎

Inflammation is commonly followed by the release of endogenous proteins called danger associated molecular patterns (DAMPs) that are able to warn the host for eminent danger. S100A8/A9 subunits are DAMPs that belong to the S100 family of calcium binding proteins. S100A8/A9 complexes induce an inflammatory response and their expression correlates with disease severity in several inflammatory disorders. S100A8/A9 promote endotoxin- and Escherichia (E.) coli-induced sepsis showing its contribution in systemic infection. The role of S100A8/A9 during a local infection of the urinary tract system caused by E. coli remains unknown.


Toll-like receptor-4 coordinates the innate immune response of the kidney to renal ischemia/reperfusion injury.

  • Wilco P Pulskens‎ et al.
  • PloS one‎
  • 2008‎

Toll-like receptors (TLRs) can detect endogenous danger molecules released upon tissue injury resulting in the induction of a proinflammatory response. One of the TLR family members, TLR4, is constitutively expressed at RNA level on renal epithelium and this expression is enhanced upon renal ischemia/reperfusion (I/R) injury. The functional relevance of this organ-specific upregulation remains however unknown. We therefore investigated the specific role of TLR4 and the relative contribution of its two downstream signaling cascades, the MyD88-dependent and TRIF-dependent cascades in renal damage by using TLR4-/-, MyD88-/- and TRIF-mutant mice that were subjected to renal ischemia/reperfusion injury. Our results show that TLR4 initiates an exaggerated proinflammatory response upon I/R injury, as reflected by lower levels of chemokines and infiltrating granulocytes, less renal damage and a more preserved renal function in TLR4-/- mice as compared to wild type mice. In vitro studies demonstrate that renal tubular epithelial cells can coordinate an immune response to ischemic injury in a TLR4-dependent manner. In vivo we found that epithelial- and leukocyte-associated functional TLR4 contribute in a similar proportion to renal dysfunction and injury as assessed by bone marrow chimeric mice. Surprisingly, no significant differences were found in renal function and inflammation in MyD88-/- and TRIF-mutant mice compared with their wild types, suggesting that selective targeting of TLR4 directly may be more effective for the development of therapeutic tools to prevent I/R injury than targeting the intracellular pathways used by TLR4. In conclusion, we identified TLR4 as a cellular sentinel for acute renal damage that subsequently controls the induction of an innate immune response.


Donor and recipient genetic variants in NLRP3 associate with early acute rejection following kidney transplantation.

  • Mark C Dessing‎ et al.
  • Scientific reports‎
  • 2016‎

NLRP3 (NOD-like receptor family, pyrin domain containing 3) is a member of the inflammasome family and is of special interest in renal disease. Experimental studies have shown that Nlrp3 plays a significant role in the induction of renal damage and dysfunction in acute and chronic renal injury. However, the role of NLRP3 in human renal disease is completely unknown. From a retrospective cohort study, we determined in 1271 matching donor and recipient samples if several NLRP3 single nucelotide polymorphisms (SNPs) were associated with primary non-function (PNF), delayed graft function (DGF), biopsy-proven acute rejection (BPAR) and death-censored graft and patient survival. NLRP3 gain-of-function SNP (rs35829419) in donors was associated with an increased risk of BPAR while NLRP3 loss-of-function SNP (rs6672995) in the recipient was associated with a decreased risk of BPAR in the first year following renal transplantation (HR 1.91, 95% CI 1.38-2.64, P < 0.001 and HR 0.73, 95% CI 0.55-0.97, P = 0.03 resp.). NLRP3 SNPs in both donor and recipient were not associated with PNF, DGF, graft survival or patient survival. We conclude that genetic variants in the NLRP3 gene affect the risk of acute rejection following kidney transplantation.


Effect of TREM-1 blockade and single nucleotide variants in experimental renal injury and kidney transplantation.

  • Alessandra Tammaro‎ et al.
  • Scientific reports‎
  • 2016‎

Renal ischemia reperfusion (IR)-injury induces activation of innate immune response which sustains renal injury and contributes to the development of delayed graft function (DGF). Triggering receptor expressed on myeloid cells-1 (TREM-1) is a pro-inflammatory evolutionary conserved pattern recognition receptor expressed on a variety of innate immune cells. TREM-1 expression increases following acute and chronic renal injury. However, the function of TREM-1 in renal IR is still unclear. Here, we investigated expression and function of TREM-1 in a murine model of renal IR using different TREM-1 inhibitors: LP17, LR12 and TREM-1 fusion protein. In a human study, we analyzed the association of non-synonymous single nucleotide variants in the TREM1 gene in a cohort comprising 1263 matching donors and recipients with post-transplant outcomes, including DGF. Our findings demonstrated that, following murine IR, renal TREM-1 expression increased due to the influx of Trem1 mRNA expressing cells detected by in situ hybridization. However, TREM-1 interventions by means of LP17, LR12 and TREM-1 fusion protein did not ameliorate IR-induced injury. In the human renal transplant cohort, donor and recipient TREM1 gene variant p.Thr25Ser was not associated with DGF, nor with biopsy-proven rejection or death-censored graft failure. We conclude that TREM-1 does not play a major role during experimental renal IR and after kidney transplantation.


Role of TREM1-DAP12 in renal inflammation during obstructive nephropathy.

  • Alessandra Tammaro‎ et al.
  • PloS one‎
  • 2013‎

Tubulo-interstitial damage is a common finding in the chronically diseased kidney and is characterized by ongoing inflammation and fibrosis leading to renal dysfunction and end-stage renal disease. Upon kidney injury, endogenous ligands can be released which are recognized by innate immune sensors to alarm innate immune system. A new family of innate sensors is the family of TREM (triggering receptor expressed on myeloid cell). TREM1 is an activating receptor and requires association with transmembrane adapter molecule DAP12 (DNAX-associated protein 12) for cell signaling. TREM1-DAP12 pathway has a cross-talk with intracellular signaling pathways of several Toll-like receptors (TLRs) and is able to amplify TLR signaling and thereby contributes to the magnitude of inflammation. So far, several studies have shown that TLRs play a role in obstructive nephropathy but the contribution of TREM1-DAP12 herein is unknown. Therefore, we studied TREM1 expression in human and murine progressive renal diseases and further investigated the role for TREM1-DAP12 by subjecting wild-type (WT), TREM1/3 double KO and DAP12 KO mice to murine unilateral ureter obstruction (UUO) model. In patients with hydronephrosis, TREM1 positive cells were observed in renal tissue. We showed that in kidneys from WT mice, DAP12 mRNA and TREM1 mRNA and protein levels were elevated upon UUO. Compared to WT mice, DAP12 KO mice displayed less renal MCP-1, KC and TGF-β1 levels and less influx of macrophages during progression of UUO, whereas TREM1/3 double KO mice displayed less renal MCP-1 level. Renal fibrosis was comparable in WT, TREM1/3 double KO and DAP12 KO mice. We conclude that DAP12, partly through TREM1/3, is involved in renal inflammation during progression of UUO.


CD44-deficiency attenuates the immunologic responses to LPS and delays the onset of endotoxic shock-induced renal inflammation and dysfunction.

  • Elena Rampanelli‎ et al.
  • PloS one‎
  • 2013‎

Acute kidney injury (AKI) is a common complication during systemic inflammatory response syndrome (SIRS), a potentially deadly clinical condition characterized by whole-body inflammatory state and organ dysfunction. CD44 is a ubiquitously expressed cell-surface transmembrane receptor with multiple functions in inflammatory processes, including sterile renal inflammation. The present study aimed to assess the role of CD44 in endotoxic shock-induced kidney inflammation and dysfunction by using CD44 KO and WT mice exposed intraperitoneally to LPS for 2, 4, and 24 hours . Upon LPS administration, CD44 expression in WT kidneys was augmented at all time-points. At 2 and 4 hours, CD44 KO animals showed a preserved renal function in comparison to WT mice. In absence of CD44, the pro-inflammatory cytokine levels in plasma and kidneys were lower, while renal expression of the anti-inflammatory cytokine IL-10 was higher. The cytokine levels were associated with decreased leukocyte influx and endothelial activation in CD44 KO kidneys. Furthermore, in vitro assays demonstrated a role of CD44 in enhancing macrophage cytokine responses to LPS and leukocyte migration. In conclusion, our study demonstrates that lack of CD44 impairs the early pro-inflammatory cytokine response to LPS, diminishes leukocyte migration/chemotaxis and endothelial activation, hence, delays endotoxic shock-induced AKI.


Phenotyping of Nod1/2 double deficient mice and characterization of Nod1/2 in systemic inflammation and associated renal disease.

  • Ingrid Stroo‎ et al.
  • Biology open‎
  • 2012‎

It is indispensable to thoroughly characterize each animal model in order to distinguish between primary and secondary effects of genetic changes. The present study analyzed Nod1 and Nod2 double deficient (Nod1/2 DKO) mice under physiological and inflammatory conditions. Nod1 and Nod2 are members of the Nucleotide-binding domain and Leucine-rich repeat containing Receptor (NLR) family. Several inflammatory disorders, such as Crohn's disease and asthma, are linked to genetic changes in either Nod1 or Nod2. These associations suggest that Nod1 and Nod2 play important roles in regulating the immune system.Three-month-old wildtype (Wt) and Nod1/2 DKO mice were sacrificed, body and organ weight were determined, and blood was drawn. Except for lower liver weight in Nod1/2 DKO mice, no differences were found in body/organ weight between both strains. Leukocyte count and composition was comparable. No significant changes in analyzed plasma biochemical markers were found. Additionally, intestinal and vascular permeability was determined. Nod1/2 DKO mice show increased susceptibility for intestinal permeability while vascular permeability was not affected. Next we induced septic shock and organ damage by administering LPS+PGN intraperitoneally to Wt and Nod1/2 DKO mice and sacrificed animals after 2 and 24 hours. The systemic inflammatory and metabolic response was comparable between both strains. However, renal response was different as indicated by partly preserved kidney function and tubular epithelial cell damage in Nod1/2 DKO at 24 hours. Remarkably, renal inflammatory mediators Tnfα, KC and Il-10 were significantly increased in Nod1/2 DKO compared with Wt mice at 2 hours.Systematic analysis of Nod1/2 DKO mice revealed a possible role of Nod1/2 in the development of renal disease during systemic inflammation.


Cellular origin and microRNA profiles of circulating extracellular vesicles in different stages of diabetic nephropathy.

  • Melissa Uil‎ et al.
  • Clinical kidney journal‎
  • 2021‎

Diabetic nephropathy (DN) is a major complication of diabetes and the main cause of end-stage renal disease. Extracellular vesicles (EVs) are small cell-derived vesicles that can alter disease progression by microRNA (miRNA) transfer.


Hematopoietic stem cell transplantation in a patient with proteasome-associated autoinflammatory syndrome (PRAAS).

  • Dorit Verhoeven‎ et al.
  • The Journal of allergy and clinical immunology‎
  • 2022‎

Proteasome-associated autoinflammatory syndromes (PRAASs) form a family of recently described rare autosomal recessive disorders of disturbed proteasome assembly and proteolytic activity caused by mutations in genes coding for proteasome subunits. The treatment options for these proteasome disorders consist of lifelong immunosuppressive drugs or Janus kinase inhibitors, which may have partial efficacy and noticeable side effects. Because proteasomes are ubiquitously expressed, it is unknown whether hematopoietic stem cell transplantation (HSCT) may be a sufficient treatment option.


TREM1/3 Deficiency Impairs Tissue Repair After Acute Kidney Injury and Mitochondrial Metabolic Flexibility in Tubular Epithelial Cells.

  • Alessandra Tammaro‎ et al.
  • Frontiers in immunology‎
  • 2019‎

Long-term sequelae of acute kidney injury (AKI) are associated with incomplete recovery of renal function and the development of chronic kidney disease (CKD), which can be mediated by aberrant innate immune activation, mitochondrial pathology, and accumulation of senescent tubular epithelial cells (TECs). Herein, we show that the innate immune receptor Triggering receptor expressed on myeloid cells-1 (TREM-1) links mitochondrial metabolism to tubular epithelial senescence. TREM-1 is expressed by inflammatory and epithelial cells, both players in renal repair after ischemia/reperfusion (IR)-induced AKI. Hence, we subjected WT and TREM1/3 KO mice to different models of renal IR. TREM1/3 KO mice displayed no major differences during the acute phase of injury, but increased mortality was observed in the recovery phase. This detrimental effect was associated with maladaptive repair, characterized by persistent tubular damage, inflammation, fibrosis, and TEC senescence. In vitro, we observed an altered mitochondrial homeostasis and cellular metabolism in TREM1/3 KO primary TECs. This was associated with G2/M arrest and increased ROS accumulation. Further exposure of cells to ROS-generating triggers drove the cells into a stress-induced senescent state, resulting in decreased wound healing capacity. Treatment with a mitochondria anti-oxidant partly prevented the senescent phenotype, suggesting a role for mitochondria herein. In summary, we have unraveled a novel (metabolic) mechanism by which TREM1/3 deficiency drives senescence in TECs. This involves redox imbalance, mitochondrial dysfunction and a decline in cellular metabolic activities. These finding suggest a novel role for TREM-1 in maintaining tubular homeostasis through regulation of mitochondrial metabolic flexibility.


Protease-activated receptor-1 contributes to renal injury and interstitial fibrosis during chronic obstructive nephropathy.

  • Maaike Waasdorp‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2019‎

End-stage renal disease, the final stage of all chronic kidney disorders, is associated with renal fibrosis and inevitably leads to renal failure and death. Transition of tubular epithelial cells (TECs) into mesenchymal fibroblasts constitutes a proposed mechanism underlying the progression of renal fibrosis and here we assessed whether protease-activated receptor (PAR)-1, which recently emerged as an inducer of epithelial-to-mesenchymal transition (EMT), aggravates renal fibrosis. We show that PAR-1 activation on TECs reduces the expression of epithelial markers and simultaneously induces mesenchymal marker expression reminiscent of EMT. We next show that kidney damage was reduced in PAR-1-deficient mice during unilateral ureter obstruction (UUO) and that PAR-1-deficient mice develop a diminished fibrotic response. Importantly, however, we did hardly observe any signs of mesenchymal transition in both wild-type and PAR-1-deficient mice suggesting that diminished fibrosis in PAR-1-deficient mice is not due to reduced EMT. Instead, the accumulation of macrophages and fibroblasts was significantly reduced in PAR-1-deficient animals which were accompanied by diminished production of MCP-1 and TGF-β. Overall, we thus show that PAR-1 drives EMT of TECs in vitro and aggravates UUO-induced renal fibrosis although this is likely due to PAR-1-dependent pro-fibrotic cytokine production rather than EMT.


The polysaccharide capsule of Streptococcus pneumonia partially impedes MyD88-mediated immunity during pneumonia in mice.

  • Alex F de Vos‎ et al.
  • PloS one‎
  • 2015‎

Toll-like receptors (TLR) and the downstream adaptor protein MyD88 are considered crucial for protective immunity during bacterial infections. Streptococcus (S.) pneumoniae is a human respiratory pathogen and a large majority of clinical pneumococcal isolates expresses an external polysaccharide capsule. We here sought to determine the role of pneumococcal capsule in MyD88-mediated antibacterial defense during S. pneumonia pneumonia. Wild type (WT) and Myd88(-/-) mice were inoculated intranasally with serotype 2 S. pneumoniae D39 or with an isogenic capsule locus deletion mutant (D39∆cps), and analysed for bacterial outgrowth and inflammatory responses in the lung. As compared to WT mice, Myd88(-/-) mice infected with D39 demonstrated a modestly impaired bacterial clearance accompanied by decreased inflammatory responses in the lung. Strikingly, while WT mice rapidly cleared D39∆cps, Myd88(-/-) mice showed 105-fold higher bacterial burdens in their lungs and dissemination to blood 24 hours after infection. These data suggest that the pneumococcal capsule impairs recognition of TLR ligands expressed by S. pneumoniae and thereby partially impedes MyD88-mediated antibacterial defense.


Expression and Function of Granzymes A and B in Escherichia coli Peritonitis and Sepsis.

  • M Isabel García-Laorden‎ et al.
  • Mediators of inflammation‎
  • 2017‎

Escherichia (E.) coli is the most common causative pathogen in peritonitis, the second most common cause of sepsis. Granzymes (gzms) are serine proteases traditionally implicated in cytotoxicity and, more recently, in the inflammatory response. We here sought to investigate the role of gzms in the host response to E. coli-induced peritonitis and sepsis in vivo. For this purpose, we used a murine model of E. coli intraperitoneal infection, resembling the clinical condition commonly associated with septic peritonitis by this bacterium, in wild-type and gzmA-deficient (gzmA-/- ), gzmB-/- , and gzmAxB-/- mice. GzmA and gzmB were predominantly expressed by natural killer cells, and during abdominal sepsis, the percentage of these cells expressing gzms in peritoneal lavage fluid decreased, while the amount of expression in the gzm+ cells increased. Deficiency of gzmA and/or gzmB was associated with increased bacterial loads, especially in the case of gzmB at the primary site of infection at late stage sepsis. While gzm deficiency did not impact neutrophil recruitment into the abdominal cavity, it was accompanied by enhanced nucleosome release at the primary site of infection, earlier hepatic necrosis, and more renal dysfunction. These results suggest that gzms influence bacterial growth and the host inflammatory response during abdominal sepsis caused by E. coli.


Vorapaxar treatment reduces mesangial expansion in streptozotocin-induced diabetic nephropathy in mice.

  • Maaike Waasdorp‎ et al.
  • Oncotarget‎
  • 2018‎

Twenty years after the onset of diabetes, up to 40% of patients develop diabetic nephropathy. Protease-activated receptor-1 (PAR-1) has recently been shown to aggravate the development of experimental diabetic nephropathy. PAR-1 deficient mice develop less albuminuria and glomerular lesions and PAR-1 stimulation induces proliferation and fibronectin production in mesangial cells in vitro. Vorapaxar is a clinically available PAR-1 inhibitor which is currently used for secondary prevention of ischemic events.


Myeloid-related protein-14 contributes to protective immunity in gram-negative pneumonia derived sepsis.

  • Ahmed Achouiti‎ et al.
  • PLoS pathogens‎
  • 2012‎

Klebsiella (K.) pneumoniae is a common cause of pneumonia-derived sepsis. Myeloid related protein 8 (MRP8, S100A8) and MRP14 (S100A9) are the most abundant cytoplasmic proteins in neutrophils. They can form MRP8/14 heterodimers that are released upon cell stress stimuli. MRP8/14 reportedly exerts antimicrobial activity, but in acute fulminant sepsis models MRP8/14 has been found to contribute to organ damage and death. We here determined the role of MRP8/14 in K. pneumoniae sepsis originating from the lungs, using an established model characterized by gradual growth of bacteria with subsequent dissemination. Infection resulted in gradually increasing MRP8/14 levels in lungs and plasma. Mrp14 deficient (mrp14(-/-)) mice, unable to form MRP8/14 heterodimers, showed enhanced bacterial dissemination accompanied by increased organ damage and a reduced survival. Mrp14(-/-) macrophages were reduced in their capacity to phagocytose Klebsiella. In addition, recombinant MRP8/14 heterodimers, but not MRP8 or MRP14 alone, prevented growth of Klebsiella in vitro through chelation of divalent cations. Neutrophil extracellular traps (NETs) prepared from wildtype but not from mrp14(-/-) neutrophils inhibited Klebsiella growth; in accordance, the capacity of human NETs to kill Klebsiella was strongly impaired by an anti-MRP14 antibody or the addition of zinc. These results identify MRP8/14 as key player in protective innate immunity during Klebsiella pneumonia.


Limited anti-inflammatory role for interleukin-1 receptor like 1 (ST2) in the host response to murine postinfluenza pneumococcal pneumonia.

  • Dana C Blok‎ et al.
  • PloS one‎
  • 2013‎

Interleukin-1 receptor like 1 (ST2) is a negative regulator of Toll-like receptor (TLR) signaling. TLRs are important for host defense during respiratory tract infections by both influenza and Streptococcus (S.) pneumoniae. Enhanced susceptibility to pneumococcal pneumonia is an important complication following influenza virus infection. We here sought to determine the role of ST2 in primary influenza A infection and secondary pneumococcal pneumonia. ST2 knockout (st2(-/-)) and wild-type (WT) mice were intranasally infected with influenza A virus; in some experiments mice were infected 2 weeks later with S. pneumoniae. Both mouse strains cleared the virus similarly during the first 14 days of influenza infection and had recovered their weights equally at day 14. Overall st2(-/-) mice tended to have a stronger pulmonary inflammatory response upon infection with influenza; especially 14 days after infection modest but statistically significant elevations were seen in lung IL-6, IL-1β, KC, IL-10, and IL-33 concentrations and myeloperoxidase levels, indicative of enhanced neutrophil activity. Interestingly, bacterial lung loads were higher in st2(-/-) mice during the later stages of secondary pneumococcal pneumonia, which was associated with relatively increased lung IFN-γ levels. ST2 deficiency did not impact on gross lung pathology in either influenza or secondary S. pneumoniae pneumonia. These data show that ST2 plays a limited anti-inflammatory role during both primary influenza and postinfluenza pneumococcal pneumonia.


Osteopontin impairs host defense during established gram-negative sepsis caused by Burkholderia pseudomallei (melioidosis).

  • Gerritje J W van der Windt‎ et al.
  • PLoS neglected tropical diseases‎
  • 2010‎

Melioidosis, caused by infection with Burkholderia (B.) pseudomallei, is a severe illness that is endemic in Southeast Asia. Osteopontin (OPN) is a phosphorylated glycoprotein that is involved in several immune responses including induction of T-helper 1 cytokines and recruitment of inflammatory cells.


Receptor for advanced glycation end products is protective during murine tuberculosis.

  • Marieke A D van Zoelen‎ et al.
  • Molecular immunology‎
  • 2012‎

The development of active tuberculosis after infection with Mycobacterium tuberculosis is almost invariably associated with a persistent or transient state of relative immunodeficiency. The receptor for advanced glycation end products (RAGE) is a promiscuous receptor that is involved in pulmonary inflammation and infection. To investigate the role of RAGE in tuberculosis, we intranasally infected wild-type (Wt) and RAGE deficient (RAGE(-/-)) mice with live virulent M. tuberculosis. While lungs of uninfected Wt mice expressed RAGE, in particular on endothelium, M. tuberculosis pneumonia was associated with an enhanced pulmonary expression of RAGE. Lung inflammation was increased in RAGE(-/-) mice, as indicated by histopathology, percentage of inflamed area, lung weight and cytokine and chemokine levels. In addition, lung lymphocyte and neutrophil numbers were increased in the RAGE(-/-) mice. RAGE(-/-) mice had modestly higher mycobacterial loads in the lungs after 3 weeks but not after 6 weeks of infection. Moreover, RAGE(-/-) mice displayed more body weight loss and enhanced mortality. In summary, pulmonary RAGE expression is increased during tuberculosis. In addition, these data suggest that RAGE plays a beneficial role in the host response to pulmonary tuberculosis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: