Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 11 papers out of 11 papers

Ultrasensitive sensors reveal the spatiotemporal landscape of lactate metabolism in physiology and disease.

  • Xie Li‎ et al.
  • Cell metabolism‎
  • 2023‎

Despite its central importance in cellular metabolism, many details remain to be determined regarding subcellular lactate metabolism and its regulation in physiology and disease, as there is sensitive spatiotemporal resolution of lactate distribution, and dynamics remains a technical challenge. Here, we develop and characterize an ultrasensitive, highly responsive, ratiometric lactate sensor, named FiLa, enabling the monitoring of subtle lactate fluctuations in living cells and animals. Utilizing FiLa, we demonstrate that lactate is highly enriched in mammalian mitochondria and compile an atlas of subcellular lactate metabolism that reveals lactate as a key hub sensing various metabolic activities. In addition, FiLa sensors also enable direct imaging of elevated lactate levels in diabetic mice and facilitate the establishment of a simple, rapid, and sensitive lactate assay for point-of-care clinical screening. Thus, FiLa sensors provide powerful, broadly applicable tools for defining the spatiotemporal landscape of lactate metabolism in health and disease.


Illuminating NAD+ Metabolism in Live Cells and In Vivo Using a Genetically Encoded Fluorescent Sensor.

  • Yejun Zou‎ et al.
  • Developmental cell‎
  • 2020‎

Understanding of NAD+ metabolism provides many critical insights into health and diseases, yet highly sensitive and specific detection of NAD+ metabolism in live cells and in vivo remains difficult. Here, we present ratiometric, highly responsive genetically encoded fluorescent indicators, FiNad, for monitoring NAD+ dynamics in living cells and animals. FiNad sensors cover physiologically relevant NAD+ concentrations and sensitively respond to increases and decreases in NAD+. Utilizing FiNad, we performed a head-to-head comparison study of common NAD+ precursors in various organisms and mapped their biochemical roles in enhancing NAD+ levels. Moreover, we showed that increased NAD+ synthesis controls morphofunctional changes of activated macrophages, and directly imaged NAD+ declines during aging in situ. The broad utility of the FiNad sensors will expand our mechanistic understanding of numerous NAD+-associated physiological and pathological processes and facilitate screening for drug or gene candidates that affect uptake, efflux, and metabolism of this important cofactor.


A synthetic BRET-based optogenetic device for pulsatile transgene expression enabling glucose homeostasis in mice.

  • Ting Li‎ et al.
  • Nature communications‎
  • 2021‎

Pulsing cellular dynamics in genetic circuits have been shown to provide critical capabilities to cells in stress response, signaling and development. Despite the fascinating discoveries made in the past few years, the mechanisms and functional capabilities of most pulsing systems remain unclear, and one of the critical challenges is the lack of a technology that allows pulsatile regulation of transgene expression both in vitro and in vivo. Here, we describe the development of a synthetic BRET-based transgene expression (LuminON) system based on a luminescent transcription factor, termed luminGAVPO, by fusing NanoLuc luciferase to the light-switchable transcription factor GAVPO. luminGAVPO allows pulsatile and quantitative activation of transgene expression via both chemogenetic and optogenetic approaches in mammalian cells and mice. Both the pulse amplitude and duration of transgene expression are highly tunable via adjustment of the amount of furimazine. We further demonstrated LuminON-mediated blood-glucose homeostasis in type 1 diabetic mice. We believe that the BRET-based LuminON system with the pulsatile dynamics of transgene expression provides a highly sensitive tool for precise manipulation in biological systems that has strong potential for application in diverse basic biological studies and gene- and cell-based precision therapies in the future.


A pulsatile release platform based on photo-induced imine-crosslinking hydrogel promotes scarless wound healing.

  • Jian Zhang‎ et al.
  • Nature communications‎
  • 2021‎

Effective healing of skin wounds is essential for our survival. Although skin has strong regenerative potential, dysfunctional and disfiguring scars can result from aberrant wound repair. Skin scarring involves excessive deposition and misalignment of ECM (extracellular matrix), increased cellularity, and chronic inflammation. Transforming growth factor-β (TGFβ) signaling exerts pleiotropic effects on wound healing by regulating cell proliferation, migration, ECM production, and the immune response. Although blocking TGFβ signaling can reduce tissue fibrosis and scarring, systemic inhibition of TGFβ can lead to significant side effects and inhibit wound re-epithelization. In this study, we develop a wound dressing material based on an integrated photo-crosslinking strategy and a microcapsule platform with pulsatile release of TGF-β inhibitor to achieve spatiotemporal specificity for skin wounds. The material enhances skin wound closure while effectively suppressing scar formation in murine skin wounds and large animal preclinical models. Our study presents a strategy for scarless wound repair.


A strongly adhesive hemostatic hydrogel for the repair of arterial and heart bleeds.

  • Yi Hong‎ et al.
  • Nature communications‎
  • 2019‎

Uncontrollable bleeding is a major problem in surgical procedures and after major trauma. Existing hemostatic agents poorly control hemorrhaging from traumatic arterial and cardiac wounds because of their weak adhesion to wet and mobile tissues. Here we design a photo-reactive adhesive that mimics the extracellular matrix (ECM) composition. This biomacromolecule-based matrix hydrogel can undergo rapid gelling and fixation to adhere and seal bleeding arteries and cardiac walls after UV light irradiation. These repairs can withstand up to 290 mm Hg blood pressure, significantly higher than blood pressures in most clinical settings (systolic BP 60-160 mm Hg). Most importantly, the hydrogel can stop high-pressure bleeding from pig carotid arteries with 4~ 5 mm-long incision wounds and from pig hearts with 6 mm diameter cardiac penetration holes. Treated pigs survived after hemostatic treatments with this hydrogel, which is well-tolerated and appears to offer significant clinical advantage as a traumatic wound sealant.


Continuous Glucose Monitoring Enabled by Fluorescent Nanodiamond Boronic Hydrogel.

  • Jian Zhang‎ et al.
  • Advanced science (Weinheim, Baden-Wurttemberg, Germany)‎
  • 2023‎

Continuous monitoring of glucose allows diabetic patients to better maintain blood glucose level by altering insulin dosage or diet according to prevailing glucose values and thus to prevent potential hyperglycemia and hypoglycemia. However, current continuous glucose monitoring (CGM) relies mostly on enzyme electrodes or micro-dialysis probes, which suffer from insufficient stability, susceptibility to corrosion of electrodes, weak or inconsistent correlation, and inevitable interference. A fluorescence-based glucose sensor in the skin will likely be more stable, have improved sensitivity, and can resolve the issues of electrochemical interference from the tissue. This study develops a fluorescent nanodiamond boronic hydrogel system in porous microneedles for CGM. Fluorescent nanodiamond is one of the most photostable fluorophores with superior biocompatibility. When surface functionalized, the fluorescent nanodiamond can integrate with boronic polymer and form a hydrogel, which can produce fluorescent signals in response to environmental glucose concentration. In this proof-of-concept study, the strategy for building a miniatured device with fluorescent nanodiamond hydrogel is developed. The device demonstrates remarkable long-term photo and signal stability in vivo with both small and large animal models. This study presents a new strategy of fluorescence based CGM toward treatment and control of diabetes.


Low Magnitude of Compression Enhances Biosynthesis of Mesenchymal Stem Cells towards Nucleus Pulposus Cells via the TRPV4-Dependent Pathway.

  • Yibo Gan‎ et al.
  • Stem cells international‎
  • 2018‎

Mesenchymal stem cell- (MSC-) based therapy is regarded as a promising tissue engineering strategy to achieve nucleus pulposus (NP) regeneration for the treatment of intervertebral disc degeneration (IDD). However, it is still a challenge to promote the biosynthesis of MSC to meet the requirement of NP regeneration. The purpose of this study was to optimize the compressive magnitude to enhance the extracellular matrix (ECM) deposition towards discogenesis of MSCs. Thus, we constructed a 3D culture model for MSCs to bear different magnitudes of compression for 7 days (5%, 10%, and 20% at the frequency of 1.0 Hz for 8 hours/day) using an intelligent and mechanically active bioreactor. Then, the underlying mechanotransduction mechanism of transient receptor potential vanilloid 4 (TRPV4) was further explored. The MSC-encapsulated hybrids were evaluated by Live/Dead staining, biochemical content assay, real-time PCR, Western blot, histological, and immunohistochemical analysis. The results showed that low-magnitude compression promoted anabolic response where high-magnitude compression induced the catabolic response for the 3D-cultured MSCs. The anabolic effect of low-magnitude compression could be inhibited by inhibiting TRPV4. Meanwhile, the activation of TRPV4 enhanced the biosynthesis analogous to low-magnitude compression. These findings demonstrate that low-magnitude compression promoted the anabolic response of ECM deposition towards discogenesis for the 3D-cultured MSCs and the TRPV4 channel plays a key role on mechanical signal transduction for low-magnitude compressive loading. Further understanding of this mechanism may provide insights into the development of new therapies for MSC-based NP regeneration.


Design of a palette of SNAP-tag mimics of fluorescent proteins and their use as cell reporters.

  • Dasheng Zhang‎ et al.
  • Cell discovery‎
  • 2023‎

Naturally occurring fluorescent proteins (FPs) are the most widely used tools for tracking cellular proteins and sensing cellular events. Here, we chemically evolved the self-labeling SNAP-tag into a palette of SNAP-tag mimics of fluorescent proteins (SmFPs) that possess bright, rapidly inducible fluorescence ranging from cyan to infrared. SmFPs are integral chemical-genetic entities based on the same fluorogenic principle as FPs, i.e., induction of fluorescence of non-emitting molecular rotors by conformational locking. We demonstrate the usefulness of these SmFPs in real-time tracking of protein expression, degradation, binding interactions, trafficking, and assembly, and show that these optimally designed SmFPs outperform FPs like GFP in many important ways. We further show that the fluorescence of circularly permuted SmFPs is sensitive to the conformational changes of their fusion partners, and that these fusion partners can be used for the development of single SmFP-based genetically encoded calcium sensors for live cell imaging.


3D Embedded Printing of Complex Biological Structures with Supporting Bath of Pluronic F-127.

  • Tianzhou Hu‎ et al.
  • Polymers‎
  • 2023‎

Biofabrication is crucial in contemporary tissue engineering. The primary challenge in biofabrication lies in achieving simultaneous replication of both external organ geometries and internal structures. Particularly for organs with high oxygen demand, the incorporation of a vascular network, which is usually intricate, is crucial to enhance tissue viability, which is still a difficulty in current biofabrication technology. In this study, we address this problem by introducing an innovative three-dimensional (3D) printing strategy using a thermo-reversible supporting bath which can be easily removed by decreasing the temperature. This technology is capable of printing hydrated materials with diverse crosslinked mechanisms, encompassing gelatin, hyaluronate, Pluronic F-127, and alginate. Furthermore, the technology can replicate the external geometry of native tissues and organs from computed tomography data. The work also demonstrates the capability to print lines around 10 μm with a nozzle with a diameter of 60 μm due to the extra force exerted by the supporting bath, by which the line size was largely reduced, and this technique can be used to fabricate intricate capillary networks.


A Synthetic Phospholipid Derivative Mediates Ion Transport Across Lipid Bilayers.

  • Chenxi Wang‎ et al.
  • Frontiers in chemistry‎
  • 2021‎

Inspired by the natural phospholipid structures for cell membrane, a synthetic phospholipid LC with an ion recognition group benzo-18-crown-6 (B18C6) moiety was prepared which has been demonstrated to be able to transport ions across the lipid bilayers. Fluorescent vesicle assay shows that LC has an excellent transport activity, and the EC50 value for K+ is 11.2 μM. The voltage clamp measurement exhibits regular square-like current signals with considerably long opening times, which indicates that LC achieves efficient ion transport through a channel mechanism and its single channel conductivity is 17 pS. Both of the vesicle assay and patch clamp tests indicate that LC has selectivity for Rb+, whose ionic radius is larger than the cavity of crown ether. It suggests that the sandwich interaction may play a key role in the ion transport across lipid bilayers. All these results help us to speculate that LC transports ions via a channel mechanism with a tetrameric aggregate as the active structure. In addition, LC had obvious toxicity to HeLa cells, and the IC50 was 100.0 μM after coculture for 36 h. We hope that this simple synthetic phospholipid will offer novel perspectives in the development of more efficient and selective ion transporters.


Ultrafast, tough, and adhesive hydrogel based on hybrid photocrosslinking for articular cartilage repair in water-filled arthroscopy.

  • Yujie Hua‎ et al.
  • Science advances‎
  • 2021‎

A hydrogel scaffold for direct tissue-engineering application in water-irrigated, arthroscopic cartilage repair, is badly needed. However, such hydrogels must cure quickly under water, bind strongly and permanently to the surrounding tissue, and maintain sufficient mechanical strength to withstand the hydraulic pressure of arthroscopic irrigation (~10 kilopascal). To address these challenges, we report a versatile hybrid photocrosslinkable (HPC) hydrogel fabricated though a combination of photoinitiated radical polymerization and photoinduced imine cross-linking. The ultrafast gelation, high mechanical strength, and strong adhesion to native tissue enable the direct use of these hydrogels in irrigated arthroscopic treatments. We demonstrate, through in vivo articular cartilage defect repair in the weight-bearing regions of swine models, that the HPC hydrogel can serve as an arthroscopic autologous chondrocyte implantation scaffold for long-term cartilage regeneration, integration, and reconstruction of articular function.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: