Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,373 papers

Effects of individually silenced N-glycosylation sites and non-synonymous single-nucleotide polymorphisms on the fusogenic function of human syncytin-2.

  • Lina Cui‎ et al.
  • Cell adhesion & migration‎
  • 2016‎

The placental syncytiotrophoblast, which is formed by the fusion of cytotrophoblast cells, is indispensable for the establishment and maintenance of normal pregnancy. The human endogenous retrovirus envelope glycoprotein syncytin-2 is the most important player in mediating trophoblast cell-cell fusion as a fusogen. We constructed expression plasmids of wild-type and 21 single-amino-acid substitution mutants of syncytin-2, including 10 N-glycosylation sites individually silenced by mutagenizing N to Q, 1 naturally occurring single-nucleotide polymorphism (SNP) N118S that introduced an N-glycosylation site, and another 10 non-synonymous SNPs located within important functional domains. We observed that syncytin-2 was highly fusogenic and that the mutants had different capacities in merging 293T cells. Of the 21 mutants, N133Q, N312Q, N443Q, C46R (in the CXXC motif) and R417H (in the heptad repeat region and immunosuppressive domain) lost their fusogenicity, whereas N332Q, N118S, T367M (in the fusion peptide), V483I (in the transmembrane domain) and T522M (in the cytoplasmic domain) enhanced the fusogenic activity. We also proved that N133, N146, N177, N220, N241, N247, N312, N332 and N443 were all glycosylated in 293T cells. A co-immunoprecipitation assay showed compromised interaction between mutants N443Q, C46R, T367M, R417H and the receptor MFSD2A, whereas N118S was associated with more receptors. We also sequenced the coding sequence of syncytin-2 in 125 severe pre-eclamptic patients and 272 normal pregnant Chinese women. Surprisingly, only 1 non-synonymous SNP T522M was found and the frequencies of heterozygous carriers were not significantly different. Taken together, our results suggest that N-glycans at residues 133, 312, 332 and 443 of syncytin-2 are required for optimal fusion induction, and that SNPs C46R, N118S, T367M, R417H, V483I and T522M can alter the fusogenic function of syncytin-2.


A controlled double-duration inducible gene expression system for cartilage tissue engineering.

  • Ying Ma‎ et al.
  • Scientific reports‎
  • 2016‎

Cartilage engineering that combines competent seeding cells and a compatible scaffold is increasingly gaining popularity and is potentially useful for the treatment of various bone and cartilage diseases. Intensive efforts have been made by researchers to improve the viability and functionality of seeding cells of engineered constructs that are implanted into damaged cartilage. Here, we designed an integrative system combining gene engineering and the controlled-release concept to solve the problems of both seeding cell viability and functionality through precisely regulating the anti-apoptotic gene bcl-2 in the short-term and the chondrogenic master regulator Sox9 in the long-term. Both in vitro and in vivo experiments demonstrated that our system enhances the cell viability and chondrogenic effects of the engineered scaffold after introduction of the system while restricting anti-apoptotic gene expression to only the early stage, thereby preventing potential oncogenic and overdose effects. Our system was designed to be modular and can also be readily adapted to other tissue engineering applications with minor modification.


Treatment with irbesatan may improve slit diaphragm alterations in rats with adriamycin-induced nephropathy.

  • Na Wang‎ et al.
  • Journal of the renin-angiotensin-aldosterone system : JRAAS‎
  • 2016‎

The study aimed to evaluate the effects of oral administration of irbesartan in adriamycin-induced nephropathy considering laboratory changes, kidney histology, and expression of proteins related to slit diaphragm and cytoskeleton of the podocyte.


TLR4 Signaling in MPP⁺-Induced Activation of BV-2 Cells.

  • Peng Zhou‎ et al.
  • Neural plasticity‎
  • 2016‎

This work was conducted to establish an in vitro Parkinson's disease (PD) model by exposing BV-2 cells to 1-methyl-4-phenylpyridinium (MPP(+)) and exploring the roles of TLR2/TLR4/TLR9 in inflammatory responses to MPP(+).


Olig1 expression pattern in neural cells during rat spinal cord development.

  • Qi Qi‎ et al.
  • Neuropsychiatric disease and treatment‎
  • 2016‎

Our purpose was to systematically investigate the expression pattern and role of Olig1 in neural cells during rat spinal cord development.


The novel H2 S donor 4-carboxy-phenyl isothiocyanate inhibits mast cell degranulation and renin release by decreasing intracellular calcium.

  • Alice Marino‎ et al.
  • British journal of pharmacology‎
  • 2016‎

Hydrogen sulfide (H2 S) modulates many pathophysiological processes, including inflammation and allergic reactions, in which mast cells act as major effector cells. IgE receptor (FcεRI) cross linking leads to an increase in intracellular calcium ([Ca+2 ]i ), a critical step in mast cell degranulation. The aim of this study was to investigate the role of H2 S in [Ca+2 ]i -dependent mast cell activation.


Long noncoding RNA CCAT1 acts as an oncogene and promotes chemoresistance in docetaxel-resistant lung adenocarcinoma cells.

  • Jing Chen‎ et al.
  • Oncotarget‎
  • 2016‎

Chemoresistance remains one of the major obstacles in clinical treatment of lung adenocarcinoma (LAD). Indeed, docetaxel-resistant LAD cells present chemoresistance and epithelial-to-mesenchymal transition phenotypes. Long non-coding RNAs (lncRNAs) are known to promote tumorigenesis in many cancer types. Here, we showed that the lncRNA colon cancer-associated transcript-1 (CCAT1) was upregulated in docetaxel-resistant LAD cells. Furthermore, downregulation of CCAT1 decreased chemoresistance, inhibited proliferation, enhanced apoptosis and reversed the epithelial-to-mesenchymal transition phenotype of docetaxel-resistant LAD cells. We also found that the oncogenic function of CCAT1 in docetaxel-resistant LAD cells depended on the sponging of let-7c. In turn, the sponging of let-7c by CCAT1 released Bcl-xl (a let-7c target), thereby promoting the acquisition of chemoresistance and epithelial-to-mesenchymal transition phenotypes in docetaxel-resistant LAD cells. Our data reveal a novel pathway underlying chemoresistance and the epithelial-to-mesenchymal transition in docetaxel-resistant LAD cells.


Cross-talk between PRMT1-mediated methylation and ubiquitylation on RBM15 controls RNA splicing.

  • Li Zhang‎ et al.
  • eLife‎
  • 2015‎

RBM15, an RNA binding protein, determines cell-fate specification of many tissues including blood. We demonstrate that RBM15 is methylated by protein arginine methyltransferase 1 (PRMT1) at residue R578, leading to its degradation via ubiquitylation by an E3 ligase (CNOT4). Overexpression of PRMT1 in acute megakaryocytic leukemia cell lines blocks megakaryocyte terminal differentiation by downregulation of RBM15 protein level. Restoring RBM15 protein level rescues megakaryocyte terminal differentiation blocked by PRMT1 overexpression. At the molecular level, RBM15 binds to pre-messenger RNA intronic regions of genes important for megakaryopoiesis such as GATA1, RUNX1, TAL1 and c-MPL. Furthermore, preferential binding of RBM15 to specific intronic regions recruits the splicing factor SF3B1 to the same sites for alternative splicing. Therefore, PRMT1 regulates alternative RNA splicing via reducing RBM15 protein concentration. Targeting PRMT1 may be a curative therapy to restore megakaryocyte differentiation for acute megakaryocytic leukemia.


Identification of Candidate Genes for Seed Glucosinolate Content Using Association Mapping in Brassica napus L.

  • Cun-Min Qu‎ et al.
  • Genes‎
  • 2015‎

Rapeseed contains glucosinolates, a toxic group of sulfur-containing glucosides, which play critical roles in defense against herbivores and microbes. However, the presence of glucosinolates in rapeseed reduces the value of the meal as feed for livestock. We performed association mapping of seed glucosinolate (GS) content using the 60K Brassica Infinium single nucleotide polymorphism (SNP) array in 520 oilseed rape accessions. A total of 11 peak SNPs significantly associated with GS content were detected in growing seasons of 2013 and 2014 and were located on B. napus chromosomes A08, A09, C03, and C09, respectively. Two associated regions of GS content covered by these markers were further verified, and three B. napus homologous genes involved in the biosynthesis and accumulation of GS were identified. These genes were multigene family members and were distributed on different chromosomes. Moreover, two genes (BnGRT2 and BnMYB28) associated with GS content were validated by the qRT-PCR analysis of their expression profiles. The further identification and functionalization of these genes will provide useful insight into the mechanism underlying GS biosynthesis and allocation in B. napus, and the associated SNPs markers could be helpful for molecular maker-assisted breeding for low seed GS in B. napus.


MiR-130a-3p regulates cell migration and invasion via inhibition of Smad4 in gemcitabine resistant hepatoma cells.

  • Yang Liu‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2016‎

Emerging evidence demonstrates that microRNAs (miRNAs) play an important role in regulation of cell growth, invasion and metastasis through inhibiting the expression of their targets. It has been reported that miR-130a-3p controls cell growth, migration and invasion in a variety of cancer cells. However, it is unclear whether miR-130a-3p regulates epithelial-mesenchymal transition (EMT) in drug resistant cancer cells. Therefore, in the current study, we explore the role and molecular mechanisms of miR-130a-3p in gemcitabine resistant (GR) hepatocellular carcinoma (HCC) cells.


Efficacy of Linezolid and Fosfomycin in Catheter-Related Biofilm Infection Caused by Methicillin-Resistant Staphylococcus aureus.

  • Dong Chai‎ et al.
  • BioMed research international‎
  • 2016‎

As long-standing clinical problems, catheter-related infections and other chronic biofilm infections are more difficult to treat due to the high antibiotic resistance of biofilm. Therefore, new treatments are needed for more effective bacteria clearance. In this study, we evaluated the antibacterial activities of several common antibiotics alone and their combinations against biofilm-embedded methicillin-resistant staphylococcus aureus (MRSA) infections, both in vitro and in vivo. In brief, fosfomycin, levofloxacin, and rifampin alone or in combination with linezolid were tested in vitro against planktonic and biofilm-embedded MRSA infection in three MRSA stains. The synergistic effects between linezolid and the other three antibiotics were assessed by fractional inhibitory concentration index (FICI) and time-kill curves, where the combination of linezolid plus fosfomycin showed the best synergistic effect in all strains. For further evaluation in vivo, we applied the combination of linezolid and fosfomycin in a catheter-related biofilm rat model and found that viable bacteria counts in biofilm were significantly reduced after treatment (P < 0.05). In summary, we have shown here that the combination of linezolid and fosfomycin treatment had improved therapeutic effects on biofilm-embedded MRSA infection both in vitro and in vivo, which provided important basis for new clinical therapy development.


Genome-wide association study identifies 8p21.3 associated with persistent hepatitis B virus infection among Chinese.

  • Yuanfeng Li‎ et al.
  • Nature communications‎
  • 2016‎

Hepatitis B virus (HBV) infection is a common infectious disease. Here we perform a genome-wide association study (GWAS) among Chinese populations to identify novel genetic loci involved in persistent HBV infection. GWAS scan is performed in 1,251 persistently HBV infected subjects (PIs, cases) and 1,057 spontaneously recovered subjects (SRs, controls), followed by replications in four independent populations totally consisting of 3,905 PIs and 3,356 SRs. We identify a novel locus at 8p21.3 (index rs7000921, odds ratio=0.78, P=3.2 × 10(-12)). Furthermore, we identify significant expression quantitative trait locus associations for INTS10 gene at 8p21.3. We demonstrate that INST10 suppresses HBV replication via IRF3 in liver cells. In clinical plasma samples, we confirm that INST10 levels are significantly decreased in PIs compared with SRs, and negatively correlated with the HBV load. These findings highlight a novel antiviral gene INTS10 at 8p21.3 in the clearance of HBV infection.


A double-negative feedback loop between E2F3b and miR- 200b regulates docetaxel chemosensitivity of human lung adenocarcinoma cells.

  • Yanping Gao‎ et al.
  • Oncotarget‎
  • 2016‎

MicroRNAs (miRNAs) are non-coding small RNAs which negatively regulate gene expressions mainly through 3'-untranslated region (3'-UTR) binding of target mRNAs. Recent studies have highlighted the feedback loops between miRNAs and their target genes in physiological and pathological processes including chemoresistance of cancers. Our previous study identified miR-200b/E2F3 axis as a chemosensitivity restorer of human lung adenocarcinoma (LAD) cells. Moreover, E2F3b was bioinformatically proved to be a potential transcriptional regulator of pre-miR-200b gene promoter. The existance of this double-negative feedback minicircuitry comprising E2F3b and miR-200b was confirmed by chromatin immunoprecipitation (ChIP) assay, site-specific mutation and luciferase reporter assay. And the underlying regulatory mechanisms of this feedback loop on docetaxel resistance of LAD cells were further investigated by applying in vitro chemosensitivity assay, colony formation assay, flow cytometric analysis of cell cycle and apoptosis, as well as mice xenograft model. In conclusion, our results suggest that the double-negative feedback loop between E2F3b and miR-200b regulates docetaxel chemosensitivity of human LAD cells mainly through cell proliferation, cell cycle distribution and apoptosis.


Bach1 Induces Endothelial Cell Apoptosis and Cell-Cycle Arrest through ROS Generation.

  • Xinhong Wang‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2016‎

The transcription factor BTB and CNC homology 1 (Bach1) regulates genes involved in the oxidative stress response and cell-cycle progression. We have recently shown that Bach1 impairs cell proliferation and promotes apoptosis in cultured endothelial cells (ECs), but the underlying mechanisms are largely uncharacterized. Here we demonstrate that Bach1 upregulation impaired the blood flow recovery from hindlimb ischemia and this effect was accompanied both by increases in reactive oxygen species (ROS) and cleaved caspase 3 levels and by declines in the expression of cyclin D1 in the injured tissues. We found that Bach1 overexpression induced mitochondrial ROS production and caspase 3-dependent apoptosis and its depletion attenuated H2O2-induced apoptosis in cultured human microvascular endothelial cells (HMVECs). Bach1-induced apoptosis was largely abolished when the cells were cultured with N-acetyl-l-cysteine (NAC), a ROS scavenger. Exogenous expression of Bach1 inhibited the cell proliferation and the expression of cyclin D1, induced an S-phase arrest, and increased the expression of cyclin E2, which were partially blocked by NAC. Taken together, our results suggest that Bach1 suppresses cell proliferation and induces cell-cycle arrest and apoptosis by increasing mitochondrial ROS production, suggesting that Bach1 may be a promising treatment target for the treatment of vascular diseases.


Exogenous H2S contributes to recovery of ischemic post-conditioning-induced cardioprotection by decrease of ROS level via down-regulation of NF-κB and JAK2-STAT3 pathways in the aging cardiomyocytes.

  • Lina Li‎ et al.
  • Cell & bioscience‎
  • 2016‎

Hydrogen sulfide (H2S), a third member of gasotransmitter family along with nitric oxide and carbon monoxide, generated from mainly catalyzed by cystathionine-lyase, possesses important functions in the cardiovascular system. Ischemic post-conditioning (PC) strongly protects against the hypoxia/reoxygenation (H/R)-induced injury and apoptosis of cardiomyocytes. However, PC protection is ineffective in the aging cardiomyocytes. Whether H2S restores PC-induced cardioprotection by decrease of reactive oxygen species (ROS) level in the aging cardiomyocytes is unknown.


Clinical and genetic features of lung squamous cell cancer in never-smokers.

  • Yangle Huang‎ et al.
  • Oncotarget‎
  • 2016‎

To evaluate the importance of specific driver mutations to the development and outcome of lung squamous cell cancer (SQCC) in never-smokers, we assessed the clinicopathological characteristics and outcomes of 597 patients who underwent complete resection of SQCCs. In total, 88 (14.7%) never-smokers and 509 (85.3%) ever-smokers were compared. The never-smokers included more females (42.05% vs. 1.57%, P < 0.001) and more often had a personal history of malignant disease (9.09% vs. 2.36%, P = 0.003). The tumors of never-smokers were more often poorly differentiated (70.45% vs. 53.24%, P = 0.010) and more often contained oncogenic mutations (21.05% vs 11.05%, P = 0.023), particularly EGFR mutations (13.16% vs 3.40%, P = 0.001). Never-smokers also tended to have poorer OS than smokers. Our results suggest lung SQCCs in never-smokers are a subtype distinct from SQCCs occurring in smokers.


Chemical Exchange Saturation Transfer MR Imaging is Superior to Diffusion-Tensor Imaging in the Diagnosis and Severity Evaluation of Parkinson's Disease: A Study on Substantia Nigra and Striatum.

  • Chunmei Li‎ et al.
  • Frontiers in aging neuroscience‎
  • 2015‎

Parkinson's disease (PD) is a neurodegenerative disorder characterized by nigrostriatal cell loss. To date, the diagnosis of PD is still based primarily on the clinical manifestations, which may be typical and obvious only in advanced-stage PD. Thus, it is crucial to find a reliable marker for the diagnosis of PD. We conducted this study to assess the diagnostic efficiency of chemical exchange saturation transfer (CEST) imaging and diffusion-tensor imaging (DTI) in PD at 3 T by evaluating changes on substantia nigra and striatum. Twenty-three PD patients and twenty-three age-matched normal controls were recruited. All patients and controls were imaged on a 3-T MR system, using an eight-channel head coil. CEST imaging was acquired in two transverse slices of the head, including substantia nigra and striatum. The magnetization transfer ratio asymmetry at 3.5 ppm, MTRasym(3.5 ppm), and the total CEST signal intensity between 0 and 4 ppm were calculated. Multi-slice DTI was acquired for all the patients and normal controls. Quantitative analysis was performed on the substantia nigra, globus pallidus, putamen, and caudate. The MTRasym(3.5 ppm) value, the total CEST signal intensity, and fractional anisotropy value of the substantia nigra were all significantly lower in PD patients than in normal controls (P = 0.003, P = 0.004, and P < 0.001, respectively). The MTRasym(3.5 ppm) values of the putamen and the caudate were significantly higher in PD patients than in normal controls (P = 0.010 and P = 0.009, respectively). There were no significant differences for the mean diffusivity in these four regions between PD patients and normal controls. In conclusion, CEST MR imaging provided multiple CEST image contrasts in the substantia nigra and the striatum in PD and may be superior to DTI in the diagnosis of PD.


Bacopaside I ameliorates cognitive impairment in APP/PS1 mice via immune-mediated clearance of β-amyloid.

  • Yuanyuan Li‎ et al.
  • Aging‎
  • 2016‎

Standardized extracts of Bacopa monniera (BME) have been shown to exert a neuroprotective effect against mental diseases, such as depression, anxiety and Alzheimer's disease (AD), in chronic administration studies. However, its mechanism of action has remained unclear. In this study, we evaluated the therapeutic effect of Bacopaside I (BS-I), a major triterpenoid saponin of BME, on the cognitive impairment and neuropathology in APP/PS1 transgenic mice and explored the possible mechanism from a biological systems perspective. We found that BS-I treatment significantly ameliorated learning deficits, improved long-term spatial memory, and reduced plaque load in APP/PS1 mice. We constructed BS-I's therapeutic effect network by mapping the nodes onto the protein-protein interaction (PPI) network constructed according to their functional categories based on genomic and proteomic data. Because many of the top enrichment categories related to the processes of the immune system and phagocytosis were detected, we proposed that BS-I promotes amyloid clearance via the induction of a suitable degree of innate immune stimulation and phagocytosis. Our research may help to clarify the neuroprotective effect of BME and indicated that natural saponins target the immune system, which may offer new research avenues to discover novel treatments for AD.


Structural and functional characterization of Pseudomonas aeruginosa CupB chaperones.

  • Xun Cai‎ et al.
  • PloS one‎
  • 2011‎

Pseudomonas aeruginosa, an important human pathogen, is estimated to be responsible for ∼10% of nosocomial infections worldwide. The pathogenesis of P. aeruginosa starts from its colonization in the damaged tissue or medical devices (e.g. catheters, prothesis and implanted heart valve etc.) facilitated by several extracellular adhesive factors including fimbrial pili. Several clusters containing fimbrial genes have been previously identified on the P. aeruginosa chromosome and named cup[1]. The assembly of the CupB pili is thought to be coordinated by two chaperones, CupB2 and CupB4. However, due to the lack of structural and biochemical data, their chaperone activities remain speculative. In this study, we report the 2.5 Å crystal structure of P. aeruginosa CupB2. Based on the structure, we further tested the binding specificity of CupB2 and CupB4 towards CupB1 (the presumed major pilus subunit) and CupB6 (the putative adhesin) using limited trypsin digestion and strep-tactin pull-down assay. The structural and biochemical data suggest that CupB2 and CupB4 might play different, but not redundant, roles in CupB secretion. CupB2 is likely to be the chaperone of CupB1, and CupB4 could be the chaperone of CupB4:CupB5:CupB6, in which the interaction of CupB4 and CupB6 might be mediated via CupB5.


Role of dopamine D2 receptors in ischemia/reperfusion induced apoptosis of cultured neonatal rat cardiomyocytes.

  • Hong-zhu Li‎ et al.
  • Journal of biomedical science‎
  • 2011‎

Myocardial ischemia/reperfusion injury is the major cause of morbidity and mortality for cardiovascular diseases. Dopamine D2 receptors are expressed in cardiac tissues. However, the roles of dopamine D2 receptors in myocardial ischemia/reperfusion injury and cardiomyocyte apoptosis are unclear. Here we investigated the effects of both dopamine D2 receptors agonist (bromocriptine) and antagonist (haloperidol) on apoptosis of cultured neonatal rat ventricular myocytes induced by ischemia/reperfusion injury.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: