Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

Heat inactivation decreases the qualitative real-time RT-PCR detection rates of clinical samples with high cycle threshold values in COVID-19.

  • Jingbo Zou‎ et al.
  • Diagnostic microbiology and infectious disease‎
  • 2020‎

SARS-CoV-2 has caused COVID-19 pandemic globally in the beginning of 2020, and qualitative real-time RT-PCR has become the gold standard in diagnosis. As SARSCoV-2 with strong transmissibility and pathogenicity, it has become a professional consensus that clinical samples from suspected patients should be heat inactivated at 56°C for 30 min before further processing. However, previous studies on the effect of inactivation on qualitative real-time RT-PCR were conducted with diluted samples rather than clinical samples. The aim of this study was to investigate whether heat inactivation on clinical samples before detection will affect the accuracy of qualitative real-time RT-PCR detection. All 46 throat swab samples from 46 confirmed inpatients were detected by qualitative real-time RT-PCR directly, as well as after heat inactivation. Heat-Inactivation has significantly influenced the qualitative detection results on clinical samples, especially weakly positive samples. The results indicate the urgency to establish a more suitable protocol for COVID-19 clinical sample's inactivation.


Investigating the Short-Term Effects of Cold Stress on Metabolite Responses and Metabolic Pathways in Inner-Mongolia Sanhe Cattle.

  • Lirong Hu‎ et al.
  • Animals : an open access journal from MDPI‎
  • 2021‎

Inner-Mongolia Sanhe cattle are well-adapted to low-temperature conditions, but the metabolic mechanisms underlying their climatic resilience are still unknown. Based on the 1H Nuclear Magnetic Resonance platform, 41 metabolites were identified and quantified in the serum of 10 heifers under thermal neutrality (5 °C), and subsequent exposure to hyper-cold temperature (-32 °C) for 3 h. Subsequently, 28 metabolites were pre-filtrated, and they provided better performance in multivariate analysis than that of using 41 metabolites. This indicated the need for pre-filtering of the metabolome data in a paired experimental design. In response to the cold exposure challenge, 19 metabolites associated with cold stress response were identified, mainly enriched in "aminoacyl-tRNA biosynthesis" and "valine, leucine, and isoleucine degradation". A further integration of metabolome and gene expression highlighted the functional roles of the DLD (dihydrolipoamide dehydrogenase), WARS (tryptophanyl-tRNA synthetase), and RARS (arginyl-tRNA synthetase) genes in metabolic pathways of valine and leucine. Furthermore, the essential regulations of SLC30A6 (solute carrier family 30 (zinc transporter), member 6) in metabolic transportation for propionate, acetate, valine, and leucine under severe cold exposure were observed. Our findings presented a comprehensive characterization of the serum metabolome of Inner-Mongolia Sanhe cattle, and contributed to a better understanding of the crucial roles of regulations in metabolites and metabolic pathways during cold stress events in cattle.


Development and identification of an elite wheat-Hordeum californicum T6HcS/6BL translocation line ND646 containing several desirable traits.

  • Zhangjun Wang‎ et al.
  • Genetics and molecular biology‎
  • 2022‎

Hordeum californicum (H. californicum, 2n=2X=14, HcHc), one of the wild relatives of wheat (Triticum aestivum L.), harbors many desirable genes and is a potential genetic resource for wheat improvement. In this study, an elite line ND646 was selected from a BC4F5 population, which was developed using 60Co-γ irradiated wheat-H. californicum disomic addition line WJ28-1 (DA6Hc) as the donor parent and Ningchun 4 as the recurrent parent. ND646 was identified as a novel wheat-H. californicum 6HcS/6BL translocation line using genomic in situ hybridization (GISH), fluorescence in situ hybridization (FISH), and H. californicum-specific expressed sequence tag (EST) markers. Further evaluation revealed that ND646 had excellent performance in several traits, such as a higher sedimentation value (SV), higher water absorption rate (WAR), and higher hardness index (HI). More importantly, it had more kernels per spike (KPS), a higher grain yields (GY), and good resistance to powdery mildew, leaf rust, and 2,4-D butylate (2,4-D). Its excellent phenotypic performance laid the foundation for further investigation of its genetic architecture and makes ND646 a useful germplasm resource for wheat breeding.


Association Analysis of Polymorphisms in the 5' Flanking Region of the HSP70 Gene with Blood Biochemical Parameters of Lactating Holstein Cows under Heat and Cold Stress.

  • Zaheer Abbas‎ et al.
  • Animals : an open access journal from MDPI‎
  • 2020‎

Thermal stress (heat and cold) has large economic and welfare implications for the worldwide dairy industry. Therefore, it is paramount to understand the genetic background of coping mechanism related to thermal stress for the implementation of effective genetic selection schemes in dairy cattle. We performed an association study between 11 single nucleotide polymorphisms having minor allelic frequency (MAF > 0.05) in the HSP70 gene with blood biochemical parameters. The concentrations of growth hormone (GH), lactate (LA), prolactin (PRL), and superoxide dismutase (SOD) in blood were significantly higher (p < 0.05), while the concentrations of blood urea nitrogen (BUN), c-reactive protein (CRP), potassium (K+), lactate dehydrogenase (LDH), lipid peroxide (LPO), and norepinephrine (NE) were significantly lower (p < 0.05) in heat-stressed animals as compared to the control group. A significant (p < 0.05) increase in the concentrations of cortisol (COR), corticosterone (CORT), and potassium (K+) was observed (p < 0.05), while the concentrations of adrenocorticotrophic hormone (ACTH), dopamine (DA), GH, LDH, NE, PRL, and SOD were significantly lower in cold-stressed animals as compared to the control group (p < 0.05). Furthermore, SNP A-12G and C181T were significantly associated with LA (p < 0.05), while A72G was linked with LPO (p < 0.05) in heat-stressed animals. Moreover, the SNPs A-12G and SNP C131G were significantly associated (p < 0.05) with DA and SOD under cold stress condition, respectively. These SNPs markers significantly associated with fluctuations in blood biochemical parameters under thermal stress provide a better insight into the genetic mechanisms underlying climatic resilience in Holstein cattle.


Beta oscillations and waves in motor cortex can be accounted for by the interplay of spatially structured connectivity and fluctuating inputs.

  • Ling Kang‎ et al.
  • eLife‎
  • 2023‎

The beta rhythm (13-30 Hz) is a prominent brain rhythm. Recordings in primates during instructed-delay reaching tasks have shown that different types of traveling waves of oscillatory activity are associated with episodes of beta oscillations in motor cortex during movement preparation. We propose here a simple model of motor cortex based on local excitatory-inhibitory neuronal populations coupled by long-range excitation, where additionally inputs to the motor cortex from other neural structures are represented by stochastic inputs on the different model populations. We show that the model accurately reproduces the statistics of recording data when these external inputs are correlated on a short time scale (25 ms) and have two different components, one that targets the motor cortex locally and another one that targets it in a global and synchronized way. The model reproduces the distribution of beta burst durations, the proportion of the different observed wave types, and wave speeds, which we show not to be linked to axonal propagation speed. When the long-range connectivity or the local input targets are anisotropic, traveling waves are found to preferentially propagate along the axis where connectivity decays the fastest. Different from previously proposed mechanistic explanations, the model suggests that traveling waves in motor cortex are the reflection of the dephasing by external inputs, putatively of thalamic origin, of an oscillatory activity that would otherwise be spatially synchronized by recurrent connectivity.


Dipterocarpoidae genomics reveal their demography and adaptations to Asian rainforests.

  • Rong Wang‎ et al.
  • Nature communications‎
  • 2024‎

Dipterocarpoideae species form the emergent layer of Asian rainforests. They are the indicator species for Asian rainforest distribution, but they are severely threatened. Here, to understand their adaptation and population decline, we assemble high-quality genomes of seven Dipterocarpoideae species including two autotetraploid species. We estimate the divergence time between Dipterocarpoideae and Malvaceae and within Dipterocarpoideae to be 108.2 (97.8‒118.2) and 88.4 (77.7‒102.9) million years ago, and we identify a whole genome duplication event preceding dipterocarp lineage diversification. We find several genes that showed a signature of selection, likely associated with the adaptation to Asian rainforests. By resequencing of two endangered species, we detect an expansion of effective population size after the last glacial period and a recent sharp decline coinciding with the history of local human activities. Our findings contribute to understanding the diversification and adaptation of dipterocarps and highlight anthropogenic disturbances as a major factor in their endangered status.


MoDock: A multi-objective strategy improves the accuracy for molecular docking.

  • Junfeng Gu‎ et al.
  • Algorithms for molecular biology : AMB‎
  • 2015‎

As a main method of structure-based virtual screening, molecular docking is the most widely used in practice. However, the non-ideal efficacy of scoring functions is thought as the biggest barrier which hinders the improvement of the molecular docking method.


An effective docking strategy for virtual screening based on multi-objective optimization algorithm.

  • Honglin Li‎ et al.
  • BMC bioinformatics‎
  • 2009‎

Development of a fast and accurate scoring function in virtual screening remains a hot issue in current computer-aided drug research. Different scoring functions focus on diverse aspects of ligand binding, and no single scoring can satisfy the peculiarities of each target system. Therefore, the idea of a consensus score strategy was put forward. Integrating several scoring functions, consensus score re-assesses the docked conformations using a primary scoring function. However, it is not really robust and efficient from the perspective of optimization. Furthermore, to date, the majority of available methods are still based on single objective optimization design.


Chromosome-level genome assembly of bunching onion illuminates genome evolution and flavor formation in Allium crops.

  • Nanqiao Liao‎ et al.
  • Nature communications‎
  • 2022‎

The Allium genus is cultivated globally as vegetables, condiments, or medicinal plants and is characterized by large genomes and strong pungency. However, the genome evolution and genomic basis underlying their unique flavor formation remain poorly understood. Herein, we report an 11.27-Gb chromosome-scale genome assembly for bunching onion (A. fistulosum). The uneven bursts of long-terminal repeats contribute to diversity in genome constituents, and dispersed duplication events largely account for gene expansion in Allium genomes. The extensive duplication and differentiation of alliinase and lachrymatory factor synthase manifest as important evolutionary events during flavor formation in Allium crops. Furthermore, differential selective preference for flavor-related genes likely lead to the variations in isoalliin content in bunching onions. Moreover, we reveal that China is the origin and domestication center for bunching onions. Our findings provide insights into Allium genome evolution, flavor formation and domestication history and enable future genome-assisted breeding of important traits in these crops.


Functional gene assessment of bread wheat: breeding implications in Ningxia Province.

  • Weijun Zhang‎ et al.
  • BMC plant biology‎
  • 2021‎

The overall genetic distribution and divergence of cloned genes among bread wheat varieties that have occurred during the breeding process over the past few decades in Ningxia Province, China, are poorly understood. Here, we report the genetic diversities of 44 important genes related to grain yield, quality, adaptation and resistance in 121 Ningxia and 86 introduced wheat cultivars and advanced lines.


Identification of key Genes and Pathways Associated With Thermal Stress in Peripheral Blood Mononuclear Cells of Holstein Dairy Cattle.

  • Hao Fang‎ et al.
  • Frontiers in genetics‎
  • 2021‎

The objectives of the present study were to identify key genes and biological pathways associated with thermal stress in Chinese Holstein dairy cattle. Hence, we constructed a cell-model, applied various molecular biology experimental techniques and bioinformatics analysis. A total of 55 candidate genes were screened from published literature and the IPA database to examine its regulation under cold (25°C) or heat (42°C) stress in PBMCs. We identified 29 (3 up-regulated and 26 down-regulated) and 41 (15 up-regulated and 26 down-regulated) significantly differentially expressed genes (DEGs) (fold change ≥ 1.2-fold and P < 0.05) after cold and heat stress treatments, respectively. Furthermore, bioinformatics analyses confirmed that major biological processes and pathways associated with thermal stress include protein folding and refolding, protein phosphorylation, transcription factor binding, immune effector process, negative regulation of cell proliferation, autophagy, apoptosis, protein processing in endoplasmic reticulum, estrogen signaling pathway, pathways related to cancer, PI3K- Akt signaling pathway, and MAPK signaling pathway. Based on validation at the cellular and individual levels, the mRNA expression of the HIF1A gene showed upregulation during cold stress and the EIF2A, HSPA1A, HSP90AA1, and HSF1 genes showed downregulation after heat exposure. The RT-qPCR and western blot results revealed that the HIF1A after cold stress and the EIF2A, HSPA1A, HSP90AA1, and HSF1 after heat stress had consistent trend changes at the cellular transcription and translation levels, suggesting as key genes associated with thermal stress response in Holstein dairy cattle. The cellular model established in this study with PBMCs provides a suitable platform to improve our understanding of thermal stress in dairy cattle. Moreover, this study provides an opportunity to develop simultaneously both high-yielding and thermotolerant Chinese Holstein cattle through marker-assisted selection.


Effects of meta-tetrahydroxyphenylchlorin photodynamic therapy on isogenic colorectal cancer SW480 and SW620 cells with different metastatic potentials.

  • Gulinur Abdulrehman‎ et al.
  • Lasers in medical science‎
  • 2018‎

The aim of this study is to investigate the antitumor effects and possible mechanisms of meta-tetrahydroxyphenylchlorin-mediated photodynamic therapy (m-THPC-PDT) on human primary (SW480) and metastatic (SW620) colon cancer cell lines. SW480 and SW620 cells were incubated with various concentrations of m-THPC, followed by photodynamic irradiation. Subcellular localization of m-THPC in cells was observed with confocal laser scanning microscopy (CLSM). Photocytotoxicity of m-THPC in the two cells was investigated by using MTT assay. The flow cytometry was employed to detect the cell apoptosis. The migration and long-term recovery ability were determined by scratch test and colony formation assay respectively. CLSM showed that m-THPC was mainly distributed within the endoplasmic reticulum (ER) and lysosome of SW480 cells and within the lysosome and mitochondria of SW620 cells. m-THPC-PDT induced a dose-dependent and light energy-dependent cytotoxicity in SW480 and SW620 cells. Apoptosis rate was approximately 65 and 25% in SW480 and SW620 respectively when the concentration of m-THPC increased to 11.76 μM. However, the rate of necrotic cells had no significant changes in two cell lines. The colony formation and migration ability of the two cell lines were decreased with m-THPC-PDT treatment in a dose-dependent manner. PDT with m-THPC not only could effectively inhibit cell proliferation and decrease migration ability and colony formation ability, but also could effectively kill SW480 and SW620 cells in a dose-dependent manner in vitro. These results suggest that m-THPC is a promising sensitizer that warrants further development and extensive studies towards clinical use of colorectal cancer.


The Fatty Acid Synthase Inhibitor Platensimycin Improves Insulin Resistance without Inducing Liver Steatosis in Mice and Monkeys.

  • Sheo B Singh‎ et al.
  • PloS one‎
  • 2016‎

Platensimycin (PTM) is a natural antibiotic produced by Streptomyces platensis that selectively inhibits bacterial and mammalian fatty acid synthase (FAS) without affecting synthesis of other lipids. Recently, we reported that oral administration of PTM in mouse models (db/db and db/+) with high de novo lipogenesis (DNL) tone inhibited DNL and enhanced glucose oxidation, which in turn led to net reduction of liver triglycerides (TG), reduced ambient glucose, and improved insulin sensitivity. The present study was conducted to explore translatability and the therapeutic potential of FAS inhibition for the treatment of diabetes in humans.


PDTD: a web-accessible protein database for drug target identification.

  • Zhenting Gao‎ et al.
  • BMC bioinformatics‎
  • 2008‎

Target identification is important for modern drug discovery. With the advances in the development of molecular docking, potential binding proteins may be discovered by docking a small molecule to a repository of proteins with three-dimensional (3D) structures. To complete this task, a reverse docking program and a drug target database with 3D structures are necessary. To this end, we have developed a web server tool, TarFisDock (Target Fishing Docking) http://www.dddc.ac.cn/tarfisdock, which has been used widely by others. Recently, we have constructed a protein target database, Potential Drug Target Database (PDTD), and have integrated PDTD with TarFisDock. This combination aims to assist target identification and validation.


Uncovering potential diagnostic biomarkers of acute myocardial infarction based on machine learning and analyzing its relationship with immune cells.

  • Ling Kang‎ et al.
  • BMC cardiovascular disorders‎
  • 2023‎

Acute myocardial infarction (AMI) is a common cardiovascular disease. This study aimed to mine biomarkers associated with AMI to aid in clinical diagnosis and management.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: