Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 178 papers

A Potential Competitive Endogenous RNA Pathway Involved in Chronic Spinal Cord Injury.

  • Liang Zhang‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2018‎

BACKGROUND Chronic spinal cord injury (CSCI) is a worldwide clinical problem. We aimed to reveal differentially expressed (DE) lncRNAs and to find associated pathways that may function as targets for CSCI therapy. MATERIAL AND METHODS After a CSCI rat model was confirmed by the Basso Beattie Bresnahan (BBB) scale and the Magnetic Resonance Imaging (MRI) test, microarray analysis was used to obtain the expression profile of DE lncRNAs between CSCI rats and corresponding control rats. Then, bioinformatics analyses, including GO and KEGG pathway analysis, DE lncRNAs-mRNAs co-expression analysis, and several databases, were used to examine the function of these DE lncRNAs. Finally, quantitative real-time PCR (qRT-PCR) was used to evaluate the expressions of the 5 most significantly changed lncRNAs, Col6a1, and miR-330-3p. RESULTS Our study identified 1266 DE lncRNAs and 847 DE mRNAs, among which lncRNA6032 was significant up-regulated. Furthermore, the expressions of miR-330-3p and Col6a1 associated with lncRNA6032 were down-regulated and up-regulated, respectively. CONCLUSIONS Our results showed that the abundance of DE lncRNAs may be associated with the risk of CSCI outcome and revealed a potential competitive endogenous RNA (ceRNA) pathway involved in CSCI. Further experiments in vivo and in vitro were essential to uncover the exact mechanism of this ceRNA pathway.


YAP1 enhances cell proliferation, migration, and invasion of gastric cancer in vitro and in vivo.

  • Dan Sun‎ et al.
  • Oncotarget‎
  • 2016‎

Yes-associated protein 1 (YAP1) plays an important role in the development of carcinomas such as breast, colorectal, and gastric (GC) cancers, but the role of YAP1 in GC has not been investigated comprehensively. The present study strongly suggests that YAP1 and P62 were significantly up-regulated in GC specimens, compared with normal gastric mucosa. In addition, the YAP1high P62high expression was independently associated with poor prognosis in GC (hazard ratio: 1.334, 95% confidence interval: 1.045-1.704, P = 0.021). Stable YAP1 silencing inhibited the proliferation, migration, and invasion of BGC-823 GC cells in vitro and inhibited the growth of xenograft tumor and hematogenous metastasis of BGC-823 GC cells in vivo. The mechanism was associated with inhibited extracellular signal-regulated kinases (ERK)1/2 phosphorylation, elevated E-cadherin protein expression and decreased vimentin protein expression, down-regulated β-catenin protein expression and elevated α-catenin protein expression, and down-regulated long non-coding RNA (lncRNA) expressions including HOX transcript antisense RNA (HOTAIR), H19, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), human large tumor suppressor-2 (LATS2)-AS1-001, and LATS2. YAP1 over-expression promoted the proliferation, migration, and invasion of human immortalized normal gastric mucosa GES-1 cells in vitro by reversing the above signal molecules. Subcutaneous inoculation of GES-1 cells and YAP1-over-expressing GES-1 cells into nude mice did not generate tumors. We successfully established the xenograft tumor models using MKN-45 GC cells, but immunochemistry showed that there was no YAP1 expression in MKN-45 cells. These results suggest that YAP1 is not a direct factor affecting tumor formation, but could accelerate tumor growth and metastasis. Collectively, this study highlights an important role for YAP1 as a promoter of GC growth and metastasis, and suggests that YAP1 could possibly be a potential treatment target for GC.


SYKT Alleviates Doxorubicin-Induced Cardiotoxicity via Modulating ROS-Mediated p53 and MAPK Signal Pathways.

  • Ting Chen‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2018‎

Backgrounds. Doxorubicin (DOX) is an effective therapeutic drug for malignant tumors; however, its clinical applications were limited by its side effects, especially the cardiotoxicity caused by ROS-mediated p53 and MAPK signal pathways' activation-induced cell apoptosis. Sanyang Xuedai mixture (SYKT) has been reported as an antioxidant agent and attenuated DOX-induced cardiotoxicity by targeting ROS-mediated apoptosis, but the mechanisms are still not fully delineated. Objective. This study aimed at investigating whether SYKT alleviated DOX-induced cardiotoxicity by inhibiting ROS-mediated apoptosis and elucidating the role of ROS-mediated p53 and MAPK signal pathways' activation in this process. Materials and Methods. Identification, separation, and culture of mouse primary cardiomyocytes. Cells were treated with DOX (1 μM), SYKT (30 mg/mL), or SYKT coupled with DOX. The p53 inhibitor Pifithrin-α (PFT-α), p38/MAPK inhibitor SB203583 (SB), and JNK inhibitor SP600125 (SP) were used as positive control. Western blot was employed to detected p53 and p38 as well as JNK expressions and the activation and translocation of Bax and cytochrome C. Flow cytometer (FCM) was used to detect the mitochondrial membrane potential and cell apoptosis. Results. After separation and culture, 95% of cells showed positive cTnI expression, which indicated that mouse primary cardiomyocytes were successfully identified in our research. DOX activated p53 and MAPK signal pathways in a time-dependent manner, which were inactivated by being cotreated with SYKT, PFT-α, or SB, respectively. DOX significantly decreased Bax and increased cytochrome c expressions in the cytoplasm, whereas Bax was upregulated and cytochrome c was downregulated in the mitochondria, which were reversed by SYKT treatment. Besides, DOX reduced mitochondria membrane potential (MMP) in cardiomyocytes compared to the control group; SYKT recovered its MMP and attenuated DOX-induced cardiomyocyte injury. Of note, DOX increased the expression levels of cleaved caspase-3 as well as poly ADP-ribose polymerase (PARP) and promoted cell apoptosis, which were also reversed by SYKT treatment. Discussion and Conclusions. Our results indicated that SYKT alleviated DOX-induced cardiotoxicity by inhibiting p53 and MAPK signal pathways' activation-mediated apoptosis, and it might serve as a potential therapeutic agent for DOX-induced cardiotoxicity.


Identification of key genes and pathways for esophageal squamous cell carcinoma by bioinformatics analysis.

  • Xiaohua Chen‎ et al.
  • Experimental and therapeutic medicine‎
  • 2018‎

The aim of the present study was to identify the differentially expressed genes (DEGs) in esophageal squamous-cellcarcinoma (ESCC) and provide potential therapeutic targets. The microarray dataset GSE20347 was downloaded from the Gene Expression Omnibus (GEO) database, and included 17 tissue samples and 13 normal adjacent tissue samples from patients with ESCC. A total of 22,277 DEGs were identified. A heat map for the DEGs was constructed with the Morpheus online tool and the top 200 genes (100 upregulated and 100 downregulated) were selected for further bioinformatics analysis, including analysis of gene ontology (GO) terms, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, protein-protein interaction networks and Spearman's correlation tests. The results of the GO analysis indicated that the upregulated DEGs were most significantly enriched in membrane-bounded vesicles in the cellular component (CC) category, but were not significantly enriched in any GO terms of the categories biological process (BP) or molecular function (MF); furthermore, the downregulated DEGs were most significantly enriched in regulation of DNA metabolic processes, nucleotide binding and chromosomes in the categories BP, MF and CC, respectively. The KEGG analysis indicated that the downregulated DEGs were enriched in the regulation of cell cycle pathways. The top 10 hub proteins in the protein-protein interaction network were cyclin-dependent kinase 4, budding uninhibited by benzimidazoles 1, cyclin B2, heat shock protein 90AA1, aurora kinase A, H2A histone family member Z, replication factor C subunit 4, and minichromosome maintenance complex component 2, -4 and -7. These proteins are mainly involved in regulating tumor progression. The genes in the four top modules were mainly implicated in regulating cell cycle pathways. Secreted Ly-6/uPAR-related protein (SLURP) was the hub gene, and SLURP and its interacting genes were most enriched in the chromosomal part in the CC category, organelle organization in the BP category and protein binding in the MF category, and were involved in pathways including DNA replication, cell cycle and P53 signaling. The expression of SLURP-1 in fifteen patients with esophageal carcinoma was detected using quantitative polymerase chain reaction analysis, and the results indicated that SLURP-1 expression was significantly decreased in the tumor samples relative to that in normal adjacent tissues. These results suggest that several hub proteins and the hub gene SLURP-1 may serve as potential therapeutic targets, and that gene dysfunction may be involved in the tumorigenesis of ESCC.


Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus.

  • Huan Yan‎ et al.
  • eLife‎
  • 2012‎

Human hepatitis B virus (HBV) infection and HBV-related diseases remain a major public health problem. Individuals coinfected with its satellite hepatitis D virus (HDV) have more severe disease. Cellular entry of both viruses is mediated by HBV envelope proteins. The pre-S1 domain of the large envelope protein is a key determinant for receptor(s) binding. However, the identity of the receptor(s) is unknown. Here, by using near zero distance photo-cross-linking and tandem affinity purification, we revealed that the receptor-binding region of pre-S1 specifically interacts with sodium taurocholate cotransporting polypeptide (NTCP), a multiple transmembrane transporter predominantly expressed in the liver. Silencing NTCP inhibited HBV and HDV infection, while exogenous NTCP expression rendered nonsusceptible hepatocarcinoma cells susceptible to these viral infections. Moreover, replacing amino acids 157-165 of nonfunctional monkey NTCP with the human counterpart conferred its ability in supporting both viral infections. Our results demonstrate that NTCP is a functional receptor for HBV and HDV.DOI:http://dx.doi.org/10.7554/eLife.00049.001.


Association of HLA-DPB1 with scleroderma and its clinical features in Chinese population.

  • Jiucun Wang‎ et al.
  • PloS one‎
  • 2014‎

Human leukocyte antigen DPB1 was reported to contain singly nucleotide polymorphisms conferring the strongest susceptibility to systemic sclerosis in Korean population. However, associations of specific DPB1 alleles with SSc vary in different ethnic populations. The aim of this study was to profile DPB1 alleles in Chinese population and to identify specific DPB1 alleles in association with SSc and clinical and serological features of SSc in Han Chinese. A cohort containing 338 patients with SSc and 480 gender-matched and unrelated controls were examined in the study. The HLA-DPB1 genotyping was performed with sequence-based typing method. Exact p-values were obtained (Fisher's test) from 2×2 tables of allele counts or allele carriers and disease status. Thirty eight DPB1 alleles were found in the cohort. DPB1*05:01 was the most common allele in this cohort. DPB1*03:01 and *13:01 were significantly increased in SSc. DPB1*13:01 association had already been described in other ethnic populations, whereas DPB1*03:01 was specific to Han Chinese patients with SSc. In addition, comparisons between SSc subsets indicated that patients carrying DPB1*03:01 were more likely to develop pulmonary fibrosis, DPB1*04 carriers were increased in SSc patients with anti-centromere autoantibodies and in contrast, SSc patients with homozygous DPB1*05:01 showed an opposite association with marginal significance.


Profiling of hla-B alleles for association studies with ankylosing spondylitis in the chinese population.

  • Lin Yi‎ et al.
  • The open rheumatology journal‎
  • 2013‎

Human leucocyte antigen (HLA) B*27 is a susceptibility allele to ankylosing spondylitis (AS). However, major AS-associated subtypes of HLA-B*27 and other HLA-B alleles vary in different ethnic populations. Herein, we examined HLA-B alleles in a total of 360 AS patients and 350 controls of Chinese Han ancestry. The HLA-B genotyping was performed with sequence-based typing (SBT) method. Six HLA-B*27 subtypes B*27:04, B*27:05, B*27:07, B*27:08, B*27:10 and B*27:15 were observed in the cohorts. HLA-B*27:04:01 and -B*27:05:02 appeared significantly increased in AS patients, which indicated as two major susceptibility alleles to AS. Homozygous B*27 was observed only in AS patients. There are 30 HLA-B alleles identified in the studies. HLA-B*15, especially B*15:01:01:01, appeared as the major allele type in the Chinese controls. Some common HLA-B alleles such as HLA-B*15, B*13, B*46 and B*51 were significantly reduced in Chinese AS patients. In conclusion, the studies profiled the HLA-B alleles, and identified major susceptibility subtypes of B27 to AS in Han Chinese population.


The methyltransferase G9a regulates HoxA9-dependent transcription in AML.

  • Bernhard Lehnertz‎ et al.
  • Genes & development‎
  • 2014‎

Chromatin modulators are emerging as attractive drug targets, given their widespread implication in human cancers and susceptibility to pharmacological inhibition. Here we establish the histone methyltransferase G9a/EHMT2 as a selective regulator of fast proliferating myeloid progenitors with no discernible function in hematopoietic stem cells (HSCs). In mouse models of acute myeloid leukemia (AML), loss of G9a significantly delays disease progression and reduces leukemia stem cell (LSC) frequency. We connect this function of G9a to its methyltransferase activity and its interaction with the leukemogenic transcription factor HoxA9 and provide evidence that primary human AML cells are sensitive to G9A inhibition. Our results highlight a clinical potential of G9A inhibition as a means to counteract the proliferation and self-renewal of AML cells by attenuating HoxA9-dependent transcription.


Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2.

  • Wenhui Li‎ et al.
  • The EMBO journal‎
  • 2005‎

Human angiotensin-converting enzyme 2 (ACE2) is a functional receptor for SARS coronavirus (SARS-CoV). Here we identify the SARS-CoV spike (S)-protein-binding site on ACE2. We also compare S proteins of SARS-CoV isolated during the 2002-2003 SARS outbreak and during the much less severe 2003-2004 outbreak, and from palm civets, a possible source of SARS-CoV found in humans. All three S proteins bound to and utilized palm-civet ACE2 efficiently, but the latter two S proteins utilized human ACE2 markedly less efficiently than did the S protein obtained during the earlier human outbreak. The lower affinity of these S proteins could be complemented by altering specific residues within the S-protein-binding site of human ACE2 to those of civet ACE2, or by altering S-protein residues 479 and 487 to residues conserved during the 2002-2003 outbreak. Collectively, these data describe molecular interactions important to the adaptation of SARS-CoV to human cells, and provide insight into the severity of the 2002-2003 SARS epidemic.


Sca-1 expression is required for efficient remodeling of the extracellular matrix during skeletal muscle regeneration.

  • Kimberly A Kafadar‎ et al.
  • Developmental biology‎
  • 2009‎

Sca-1 (Stem Cell Antigen-1) is a member of the Ly-6 family proteins that functions in cell growth, differentiation, and self-renewal in multiple tissues. In skeletal muscle Sca-1 negatively regulates myoblast proliferation and differentiation, and may function in the maintenance of progenitor cells. We investigated the role of Sca-1 in skeletal muscle regeneration and show here that Sca-1 expression is upregulated in a subset of myogenic cells upon muscle injury. We demonstrate that extract from crushed muscle upregulates Sca-1 expression in myoblasts in vitro, and that this effect is reversible and independent of cell proliferation. Sca-1(-/-) mice exhibit defects in muscle regeneration, with the development of fibrosis following injury. Sca-1(-/-) muscle displays reduced activity of matrix metalloproteinases, critical regulators of extracellular matrix remodeling. Interestingly, we show that the number of satellite cells is similar in wild-type and Sca-1(-/-) muscle, suggesting that in satellite cells Sca-1 does not play a role in self-renewal. We hypothesize that Sca-1 upregulates, directly or indirectly, the activity of matrix metalloproteinases, leading to matrix breakdown and efficient muscle regeneration. Further elucidation of the role of Sca-1 in matrix remodeling may aid in the development of novel therapeutic strategies for the treatment of fibrotic diseases.


Evaluating the efficacy of post-surgery adjuvant therapies used for ductal carcinoma in situ patients: a network meta-analysis.

  • Li Wang‎ et al.
  • Oncotarget‎
  • 2017‎

Post-surgery adjuvant therapies are very important for patients suffering from ductal carcinoma in situ (DCIS). In this study we conducted a network meta-analysis (NMA) to evaluate the efficacy of different post-surgery adjuvant therapies including tamoxifen, anastrozole and radiation therapy (RT) and their combinations (RT+ tamoxifen and RT+ anastrozole).


High expression of matrix metalloproteinases 16 is associated with the aggressive malignant behavior and poor survival outcome in colorectal carcinoma.

  • Shengwen Wu‎ et al.
  • Scientific reports‎
  • 2017‎

Recent evidence suggested an important role of matrix metalloproteinases 16 (MMP16) in the progression of several cancers. However, the contribution of MMP16 to colorectal cancer (CRC) remains elusive. In this study, we combined analyzed the MMP16 expression in The Cancer Genome Atlas (TCGA), GSE39582 database and in-house database. In TCGA and GSE39584 database, the log-rank test demonstrated that overall survival (OS) for patients with low MMP16 expression in tumor tissues was significantly higher than those with high expression (P < 0.05). In the validation cohort, high MMP16 expression was significantly correlated with N stage (P = 0.008) and lymphovascular invasion (P = 0.002). The 5-year OS and disease free survival (DFS) in high and low MMP16 expression groups were 66.0% and 80.6%, 54.3% and 72.8%, respectively. Univariate and multivariate analysis showed that high MMP16 expression was an independently prognosis factor for both OS and DFS (P < 0.05). Functional study found that silencing MMP16 expression could inhibit migration and invasion of colon cancer cells. In conclusion, high expression of MMP16 is associated with the aggressive malignant behavior and poor survival outcome of CRC patients. MMP16 can serve as an indicator of prognosis as well as a potential novel target for treatment of CRC patients.


Sensitivity of non-small cell lung cancer to erlotinib is regulated by the Notch/miR-223/FBXW7 pathway.

  • Haiwei Zhang‎ et al.
  • Bioscience reports‎
  • 2017‎

Recent evidence supports a role for microRNA-223 (miR-223) in modulating tumor cell sensitivity to chemotherapeutic drugs; however, its role in cellular resistance to the effects of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) used in treatment of non-small cell lung cancer (NSCLC) remains to be elucidated. The levels of miR-223 in parental cell line (HCC827) and erlotinib resistant HCC827 cell line (HCC827/ER) were detected by qRT-PCR. HCC827/ER cells were treated with MK-2206 to block the Akt signaling pathway or RO4929097 to block the Notch signaling pathway, and then transfected with an miR-223 inhibitor or interference expression plasmid of F-Box/WD repeat-containing protein 7 (FBXW7) or insulin-like growth factor 1 receptor (IGF1R). HCC827 cells were transfected with miR-223 mimics. Next, CCK-8, colony formation, and flow cytometric apoptosis assays were used to assess cell resistance to erlotinib. When compared with its expression in HCC827 cells, miR-223 expression was significantly up-regulated in HCC827/ER cells. Blocking either the Akt or Notch signaling pathway and reducing miR-223 expression resulted in decreased resistance in HCC827/ER cells. Conversely, increasing miR-223 expression induced cell resistance to erlotinib in HCC827 cells. miR-223 enhanced resistance to erlotinib by down-regulating FBXW7 expression. Reducing FBXW7 expression lowered resistance to erlotinib in HCC827/ER cells, while interference with expression of IGF1R produced no significant effect. This study demonstrated that NSCLC cells can up-regulate their levels of miR-223 expression via the Akt and Notch signaling pathways. miR-223 may serve as an important regulator of erlotinib sensitivity in NSCLC cells by targeting FBXW7.


Immune and Stroma Related Genes in Breast Cancer: A Comprehensive Analysis of Tumor Microenvironment Based on the Cancer Genome Atlas (TCGA) Database.

  • Ming Xu‎ et al.
  • Frontiers in medicine‎
  • 2020‎

Background: Tumor microenvironment is essential for breast cancer progression and metastasis. Our study sets out to examine the genes affecting stromal and immune infiltration in breast cancer progression and prognosis. Materials and Methods: This work provides an approach for quantifying stromal and immune scores by using ESTIMATE algorithm based on gene expression matrix of breast cancer patients in TCGA database. We found differentially expressed genes (DEGs) through limma R package. Functional enrichments were accessed through Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Besides, we constructed a protein-protein network, identified several hub genes in Cytoscape, and discovered functionally similar genes in GeneMANIA. Hub genes were validated with prognostic data by Kaplan-Meier analysis both in The Cancer Genome Atlas (TCGA) database and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) database and a meta-analysis of hub genes prognosis data was utilized in multiple databases. Furthermore, their relationship with infiltrating immune cells was evaluated by Tumor IMmune Estimation Resource (TIMER) web tool. Cox regression was utilized for overall survival (OS) and recurrence-free survival (RFS) in TCGA database and OS in METABRIC database in order to evaluate the impact of stromal and immune scores on patients prognosis. Results: One thousand and eighty-five breast cancer patients were investigated and 480 differentiated expressed genes (DEGs) were found based on the analysis of mRNA expression profiles. Functional analysis of DEGs revealed their potential functions in immune response and extracellular interaction. Protein-protein interaction network gave evidence of 10 hub genes. Some of the hub genes could be used as predictive markers for patients prognosis. In this study, we found that tumor purity and specific immune cells infiltration varied in response to hub genes expression. The multivariate cox regression highlighted the fact that immune score played a detrimental role in overall survival (HR = 0.45, 95% CI: 0.27-0.74, p = 0.002) and recurrence-free survival (HR = 0.41, 95% CI: 0.22-0.77, p = 0.006) in TCGA database. These result was confirmed in METABRIC database that immune score was a protector of OS (HR = 0.88, 95% CI: 0.77-0.99, p = 0.039). Conclusions: Our findings promote a better understanding of the potential genes behind the regulation of tumor microenvironment and cells infiltration. Immune score should be considered as a prognostic factor for patients' survival.


Wheat straw increases the defense response and resistance of watermelon monoculture to Fusarium wilt.

  • Lili Tang‎ et al.
  • BMC plant biology‎
  • 2019‎

Wheat straw is a rich resource worldwide. Straw return is an effective strategy to alleviate soil-borne diseases on monoculture watermelon. Previous studies focus on soil structure, physical and chemical properties; however, little is known about the molecular responses on host plant.


Antiviral Role of Serine Incorporator 5 (SERINC5) Proteins in Classical Swine Fever Virus Infection.

  • Wenhui Li‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

Serine incorporator 5 (SERINC5), a multipass transmembrane protein, protects cells from viral infections. The mechanism by which SERINC5 protects against classical swine fever virus (CSFV) infection is unknown. In this study, overexpression of SERINC5 in PK-15 and 3D4/2 cells significantly inhibited the growth of CSFV, whereas SERINC5 silencing enhanced CSFV growth. Additionally, CSFV infection reduced SERINC5 production in cells and tissues. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to identify and analyze protein and peptide molecules that potentially interact with SERINC5. A total of 33 cellular protein candidates were identified. Next, SERINC5 was shown to interact with melanoma differentiation-associated protein 5 (MDA5) by yeast two-hybrid, protein co-localization and co-immunoprecipitation assays. Furthermore, SERINC5 enhanced MDA5-mediated type I interferon (IFN) signaling in a dose-dependent manner. Our results suggest that the anti-CSFV effect of SERINC5 is dependent on the activation of the type I IFN, which may function along with MDA5. The inhibitory effect of SERINC5 on CSFV was disappeared when the endogenous expression of MDA5 was silenced using siRNA, suggesting that SERINC5 exerts an anti-CSFV effect in an MDA5-dependent manner. Our study demonstrated a novel link between SERINC5 and MDA5 in the inhibition of CSFV replication via the type I IFN signaling pathway.


Development and effectiveness of pseudotyped SARS-CoV-2 system as determined by neutralizing efficiency and entry inhibition test in vitro.

  • Ren Yang‎ et al.
  • Biosafety and health‎
  • 2020‎

With the development of the COVID-19 epidemic, there is an urgent need to establish a system for determining the effectiveness and neutralizing activity of vaccine candidates in biosafety level 2 (BSL-2) facilities. Previously, researchers had developed a pseudotyped virus system for SARS-CoV and MERS-CoV, based on HIV-1 core, bearing virus spike protein. During the development of a pseudotyped SARS-CoV-2 system, a eukaryotic expression plasmid expressing SARS-CoV-2 spike (S) protein was constructed and then co-transfected with HIV-1 based plasmid which containing the firefly luciferase reporter gene, into HEK293T cells to prepare the pseudotyped SARS-CoV-2 virus (ppSARS-2). We have successfully established the pseudotyped SARS-CoV-2 system for neutralization and entry inhibition assays. Huh7.5 cell line was found to be the most susceptible to our pseudotyped virus model. Different levels of neutralizing antibodies were detected in convalescent serum samples of COVID-19 patients using ppSARS-2. The recombinant, soluble, angiotensin-converting enzyme 2 protein was found to inhibit the entry of ppSARS-2 in Huh7.5 cells effectively. Furthermore, the neutralization results for ppSARS-2 were consistent with those of live SARS-CoV-2 and determined using the serum samples from convalescent patients. In conclusion, we have developed an easily accessible and reliable tool for studying the neutralizing efficiency of antibodies against SARS-CoV-2 and the entry process of the virus in a BSL-2 laboratory.


MG132 Attenuates the Replication of Classical Swine Fever Virus in vitro.

  • Yuming Chen‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

The 26S proteasome, in charge of intracellular protein degradation, plays significant roles in the modulation of various cellular activities as well as in the interplay between virus and host. However, studies about the relationship between 26S proteasome and classical swine fever virus (CSFV) is limited up to now. MG132 is a proteasome inhibitor and has been extensively used in studies about replication of many viruses. Herein, we investigated the role of MG132 in CSFV replication and results showed that MG132 significantly decreased virus titers and viral RNA copies in CSFV-infected PK-15 cells. Further studies demonstrated that MG132 upregulated the expression of several interferon-stimulated genes (ISGs), in CSFV-infected cells. Since the activation of ISGs is controlled by the JAK-STAT signal pathway, we next examined the effect of MG132 on the expression and localization of key molecular STAT1 in the infected cells using Western blot and confocal laser scanning microscopy, respectively. Results showed that CSFV infection and viral NS4A protein decreased the protein level of STAT1, and MG132 promoted the accumulation of STAT1 in the nucleus of cells adjacent to the CSFV-infected cells. Besides, MG132 did not affect the expressions of IFN-α, STAT1, Mx1, OAS1, and PKR genes in cells without CSFV. In conclusion, we identify that MG132 significantly inhibits CSFV replication in vitro, in which the activation of the JAK-STAT pathway and the subsequent upregulation of expressions of ISGs might play significant roles, providing a potential preventive method for CSF.


Enforced PGC-1α expression promotes CD8 T cell fitness, memory formation and antitumor immunity.

  • Nina Dumauthioz‎ et al.
  • Cellular & molecular immunology‎
  • 2021‎

Memory CD8 T cells can provide long-term protection against tumors, which depends on their enhanced proliferative capacity, self-renewal and unique metabolic rewiring to sustain cellular fitness. Specifically, memory CD8 T cells engage oxidative phosphorylation and fatty acid oxidation to fulfill their metabolic demands. In contrast, tumor-infiltrating lymphocytes (TILs) display severe metabolic defects, which may underlie their functional decline. Here, we show that overexpression of proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), the master regulator of mitochondrial biogenesis (MB), favors CD8 T cell central memory formation rather than resident memory generation. PGC-1α-overexpressing CD8 T cells persist and mediate more robust recall responses to bacterial infection or peptide vaccination. Importantly, CD8 T cells with enhanced PGC-1α expression provide stronger antitumor immunity in a mouse melanoma model. Moreover, TILs overexpressing PGC-1α maintain higher mitochondrial activity and improved expansion when rechallenged in a tumor-free host. Altogether, our findings indicate that enforcing mitochondrial biogenesis promotes CD8 T cell memory formation, metabolic fitness, and antitumor immunity in vivo.


Oxathiapiprolin, a Novel Chemical Inducer Activates the Plant Disease Resistance.

  • Qin Peng‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Oxathiapiprolin was developed as a specific plant pathogenic oomycete inhibitor, previously shown to have highly curative and protective activities against the pepper Phytophthora blight disease under field and greenhouse tests. Therefore, it was hypothesized that oxathiapiprolin might potentially activate the plant disease resistance against pathogen infections. This study investigated the potential and related mechanism of oxathiapiprolin to activate the plant disease resistance using the bacterium Pseudomonas syringae pv tomato (Pst) and plant Arabidopsis interaction as the targeted system. Our results showed that oxathiapiprolin could activate the plant disease resistance against Pst DC3000, a non-target pathogen of oxathiapiprolin, in Arabidopsis, tobacco, and tomato plants. Our results also showed the enhanced callose deposition and H2O2 accumulation in the oxathiapiprolin-treated Arabidopsis under the induction of flg22 as the pathogen-associated molecular pattern (PAMP) treatment. Furthermore, increased levels of free salicylic acid (SA) and jasmonic acid (JA) were detected in the oxathiapiprolin-treated Arabidopsis plants compared to the mock-treated ones under the challenge of Pst DC3000. Besides, the gene expression results confirmed that at 24 h after the infiltration with Pst DC3000, the oxathiapiprolin-treated Arabidopsis plants had upregulated expression levels of the respiratory burst oxidase homolog D (RBOHD), JA-responsive gene (PDF1.2), and SA-responsive genes (PR1, PR2, and PR5) compared to the control. Taken together, oxathiapiprolin is identified as a novel chemical inducer which activates the plant disease resistance against Pst DC3000 by enhancing the callose deposition, H2O2 accumulation, and hormone SA and JA production.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: