Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 41 papers

TES inhibits colorectal cancer progression through activation of p38.

  • Huili Li‎ et al.
  • Oncotarget‎
  • 2016‎

The human TESTIN (TES) gene has been identified as a candidate tumor suppressor based on its location at a common fragile site - a region where loss of heterozygosity has been detected in numerous types of tumors. To investigate its role in colorectal cancer (CRC), we examined TES protein levels in CRC tissue samples and cell lines. We observed that TES was markedly reduced in both CRC tissue and cell lines. Additionally, overexpression of TES significantly inhibited cell proliferation, migration, and invasion, while increasing cell apoptosis in colon cancer cells. By contrast, shRNA-mediated TES knockdown elicited the opposite effects. TES inhibited the progression of CRC by up-regulating pro-apoptotic proteins, down-regulating anti-apoptotic proteins, and simultaneously activating p38 mitogen-activated protein kinase (MAPK) signaling pathways. Collectively, these data indicate that TES functions as a necessary suppressor of CRC progression by activating p38-MAPK signaling pathways. This suggests that TES may have a potential application in CRC diagnosis and targeted gene therapy.


Development and validation of a surgical-pathologic staging and scoring system for cervical cancer.

  • Shuang Li‎ et al.
  • Oncotarget‎
  • 2016‎

Most cervical cancer patients worldwide receive surgical treatments, and yet the current International Federation of Gynecology and Obstetrics (FIGO) staging system do not consider surgical-pathologic data. We propose a more comprehensive and prognostically valuable surgical-pathologic staging and scoring system (SPSs).


Next generation sequencing identifies miRNA-based biomarker panel for lupus nephritis.

  • Yu-Jih Su‎ et al.
  • Oncotarget‎
  • 2018‎

The symptomatology of lupus nephritis (LN) consists of foamy urine and lower leg edema, as well as such systemic manifestations as oral ulcers, arthralgia/arthritis, and lymphadenopathy. However, these symptoms may appear mild and non-specific. If these symptoms are unrecognized, thus delaying treatment, approximately 10% of LN patients will develop permanent kidney damage and end-stage kidney disease. Therefore, the purpose of this study is to identify a surrogate biomarker for the early detection of LN. In this study, we first adopted next generation sequencing (NGS) in order to screen differential expression levels of microRNA between SLE patients with and without LN. The results of both the NGS and the literature review confirmed the potential of 15 microRNAs through real-time qPCR. We further considered clinical laboratory data for additional analysis. In total, 41 microRNAs demonstrated significant differences through NGS screening. We then verified eight microRNAs from NGS and seven microRNAs from the literature review using the real-time qPCR method in peripheral mononuclear cells. Ultimately, mir-125a-5p, miR-146a-5p, and mir-221-3p were found to be statistically significant not only in the screening study but also in the real-time qPCR verification studies. miR-146a-5p was observed to have a significant correlation with clinical biochemistry markers, as well as to be a surrogate biomarker for the early detection of lupus nephritis. This study is the first to show that the intracellular biomarker miR-146a-5p may serve as a useful specific biomarker for the detection of lupus nephritis among lupus patients in the future, regardless of serum albumin levels and spot urine protein/creatinine ratio.


The degree of intratumor mutational heterogeneity varies by primary tumor sub-site.

  • Levi G Ledgerwood‎ et al.
  • Oncotarget‎
  • 2016‎

In an era where mutational profiles inform treatment options, it is critical to know the extent to which tumor biopsies represent the molecular profile of the primary and metastatic tumor. Head and neck squamous cell carcinoma (HNSCC) arise primarily in the mucosal lining of oral cavity and oropharynx. Despite aggressive therapy the 5-year survival rate is at 50%. The primary objective of this study is to characterize the degree of intratumor mutational heterogeneity in HNSCC. We used multi-region sequencing of paired primary and metastatic tumor DNA of 24 spatially distinct samples from seven patients with HNSCC of larynx, floor of the mouth (FOM) or oral tongue. Full length, in-depth sequencing of 202 genes implicated in cancer was carried out. Larynx and FOM tumors had more than 69.2% unique SNVs between the paired primary and metastatic lesions. In contrast, the oral tongue HNSCC had only 33.3% unique SNVs across multiple sites. In addition, HNSCC of the oral tongue had fewer mutations than larynx and FOM tumors. These findings were validated on the Affymetrix whole genome 6.0 array platform and were consistent with data from The Cancer Genome Atlas (TCGA). This is the first report demonstrating differences in mutational heterogeneity varying by subsite in HNSCC. The heterogeneity within laryngeal tumor specimens may lead to an underestimation of the genetic abnormalities within tumors and may foster resistance to standard treatment protocols. These findings are relevant to investigators and clinicians developing personalized cancer treatments based on identification of specific mutations in tumor biopsies.


Integrated analysis of long non-coding RNAs in human colorectal cancer.

  • Xiaohua Chen‎ et al.
  • Oncotarget‎
  • 2016‎

Accumulating evidence highlights the role of long non-coding RNAs (lncRNAs) in tumors. However, the genome-wide expression and roles of lncRNAs in colorectal cancer (CRC) remain unknown. Here, we systematically examined the global gene expressions in primary and synchronous liver metastases CRC tissue, in which thousands of aberrantly expressed lncRNAs were characterized. Co-expression analysis revealed that some lncRNAs correlated to their neighboring mRNAs in expression levels, whereas others formed networks with protein-coding genes in trans. We observed H3K4me3 was enriched at expressed lncRNA transcription start sites (TSSs) and correlated to dysregulated lncRNAs. Furthermore, we identified primary and metastasis tumor linked lncRNA signatures positively correlated with poor-prognosis gene set. Finally, functional experiments demonstrated two candidate lncRNAs were required for proliferation and migration of CRC cells. In summary, we provided a new framework for lncRNA associated clinical prognosis evaluation and target selection of gene therapy in CRC.


MicroRNA-150 suppresses cell proliferation and metastasis in hepatocellular carcinoma by inhibiting the GAB1-ERK axis.

  • Wei Sun‎ et al.
  • Oncotarget‎
  • 2016‎

MicroRNA-150 (miR-150) is frequently dysregulated in cancer and is involved in carcinogenesis and cancer progression. In this study, we found that miR-150 was significantly downregulated in hepatocellular carcinoma (HCC) tissues compared to adjacent noncancerous tissues. Low levels of miR-150 were significantly associated with worse clinicopathological characteristics and a poor prognosis for patients with HCC. miR-150 overexpression inhibited cell proliferation, migration and invasion in vitro and tumor growth and metastasis in vivo. Further experiments indicated that Grb2-associated binding protein 1 (GAB1) was a direct target of miR-150 in HCC cells. In addition, GAB1 expression was increased in HCC tissues and inversely correlated with miR-150 levels. Knockdown of GAB1 mimicked the tumor-suppressive effects of miR-150 overexpression on HCC cells, whereas restoration of GAB1 expression partially abolished the inhibitory effects. Moreover, miR-150 overexpression decreased GAB1 expression, subsequently downregulated phospho-ERK1/2 and suppressed epithelial-mesenchymal-transition (EMT). These effects caused by miR-150 overexpression were alleviated by exogenous GAB1 expression. Taken together, this study demonstrates that miR-150 may be useful as a prognostic marker and that the identified miR-150-GAB1-ERK axis is a potential therapeutic target for HCC.


MicroRNA-432 functions as a tumor suppressor gene through targeting E2F3 and AXL in lung adenocarcinoma.

  • Ling Chen‎ et al.
  • Oncotarget‎
  • 2016‎

Abnormal proliferation and drug resistance are the hallmarks of lung adenocarcinoma (LAD). Dispite the advances in diagnosis and therapy, the 5-year survival remains low. Increasing studies regarding its pathological mechanism have been focused on microRNA (miRNA) due to its nodal regulatory properties. This study aims to characterize the expression of miR-432 in LAD and investigate its effects on the proliferation and sensitivity of lung cancer cells to cisplatin. Here, we report that downregulation of miR-432 in LAD tissues was correlated with a higher clinical stage (p = 0.03) and poor prognosis (p = 0.036). Additionally, miR-432 expression was negative correlated with high Ki67 labeling index (p = 0.016) in our cohorts. Functionally, over-expression of miR-432 inhibits cell proliferation through arresting cell cycle and sensitizes tumor cells to cisplatin. Mechanistically, miR-432 functions by directly targeting E2F3 and AXL, and they, in turn, mediate the regulation of miR-432 towards cell proliferation and cisplatin sensitivity. Importantly, miR-432 levels are negatively correlated with the levels of E2F3 and AXL in human LAD tissues. These results demonstrated that miR-432 functions as a tumor-suppressive miRNA and may represent a prognostic parameter and therapeutic target for LAD.


Circulating plasma microRNAs as potential markers to identify EGFR mutation status and to monitor epidermal growth factor receptor-tyrosine kinase inhibitor treatment in patients with advanced non-small cell lung cancer.

  • Lili Qu‎ et al.
  • Oncotarget‎
  • 2017‎

We aimed to identify a panel of circulating plasma microRNAs that can predict EGFR mutation status and monitor epidermal growth factor receptor-tyrosine kinase inhibitor treatment in patients with non-small cell lung cancer. Microarrays were performed for the preliminary screening of dysregulated microRNAs in 9 EGFR mutation-positive patients versus healthy controls. MiR-107 was upregulated and miR-195 was downregulated in the exon 19 deletion versus wild-type group. The areas under the receiver operating characteristic curves for miR-107, miR-195, and a panel of these 2 microRNAs were 0.72, 0.75, and 0.74, with sensitivities and specificities of 64.7% and 76.6%, 71.8% and 69.1%, and 71.7% and 78.9%, respectively. MiR-122 was significantly upregulated in the p.L858R versus wild-type group. An area under the receiver operative characteristic curve of 0.75 suggests that miR-122 might be a specific biomarker for patients with the p.L858R mutation. In addition, dynamic changes in these 3 microRNAs were also found to correlate with responses to epidermal growth factor receptor-tyrosine kinase inhibitor treatment, indicating that circulating plasma microRNAs may represent potential biomarkers for monitoring epidermal growth factor receptor-tyrosine kinase inhibitor treatment. This study demonstrates the prospective application of circulating plasma microRNAs as potential non-invasive, convenient biomarkers for patients with EGFR-sensitive mutations.


Type Iγ phosphatidylinositol phosphate kinase regulates PD-L1 expression by activating NF-κB.

  • Junli Xue‎ et al.
  • Oncotarget‎
  • 2017‎

The programmed death-ligand 1 (PD-L1), by binding to PD-1 on the surface of immune cells, activates a major immune checkpoint pathway. Elevated expression of PD-L1 in tumor cells mediates tumor-induced T-cell exhaustion and immune suppression; therefore protect the survival of tumor cells. Although blockade of the PD-1/PD-L1 axis exhibits great potential in cancer treatment, mechanisms driving the up-regulation of PD-L1 in tumor cells remain not fully understood. Here we found that type Iγ phosphatidylinositol 4-phosphate (PtdIns(4)P) 5-kinase (PIPKIγ) is required for PD-L1 expression in triple negative breast cancer cells. Depletion of PIPKIγ inhibits both intrinsic and induced PD-L1 expression. Results from further analyses suggest that PIPKIγ promotes the transcription of the PD-L1 gene by activating the NF-κB pathway in these cells. These results demonstrate that PIPKIγ-dependent expression of PD-L1 is likely important for the progression of triple negative breast cancer.


Circulating microRNAs as novel biomarkers of ALK-positive nonsmall cell lung cancer and predictors of response to crizotinib therapy.

  • Liang-Liang Li‎ et al.
  • Oncotarget‎
  • 2017‎

Circulating microRNAs are potential diagnostic and predictive biomarkers, but have not been investigated for patients with anaplastic lymphoma kinase (ALK)-positive lung cancer. In this exploratory study, we sought to identify potential plasma biomarkers for ALK-positive non-small cell lung cancer (NSCLC). A microRNA microarray was used to select ALK-related microRNAs in ALK-positive NSCLC (n = 3), ALK-negative NSCLC (n = 3), and healthy subjects (n = 3). Plasma levels of 21 microRNAs were differentially expressed for ALK-positive and ALK-negative NSCLC, including 14 down-regulated and 7 up-regulated microRNAs. We also identified 5s rRNA as the most stable endogenous control gene using geNorm and NormFinder algorithms. Candidate microRNAs in plasma from ALK-positive (n = 41) and ALK-negative NSCLC patients (n = 32) were quantified using real-time reverse transcriptase quantitative polymerase chain reaction. The expression levels of miR-28-5p, miR-362-5p, and miR-660-5p were all down-regulated in ALK-positive NSCLC, compared with ALK-negative NSCLC. The areas under the receiver operating characteristic curves of miR-28-5p, miR-362-5p, miR-660-5p, and 3-microRNAs panel were 0.873, 0.673, 0.760, and 0.876, respectively. The positive predictive values of miR-28-5p, miR-362-5p, and miR-660-5p were 96.43%, 80.77%, and 83.87%, respectively. Increased plasma levels of miR-660-5p after crizotinib treatment predicted good tumor response (p = 0.012). The pre-crizotinib levels of miR-362-5p were significantly associated with progression-free survival (p = 0.015). Thus, in this preliminary investigation, we identified a potential panel of 3 microRNAs for distinguishing between patients with ALK-positive and ALK-negative NSCLC. We also identified miR-660-5p and miR-362-5p as potential predictors for response to crizotinib treatment.


RLIM suppresses hepatocellular carcinogenesis by up-regulating p15 and p21.

  • Yongsheng Huang‎ et al.
  • Oncotarget‎
  • 2017‎

Hepatocellular carcinogenesis results from dysregulation of oncogenes and tumor suppressors that influence cellular proliferation, differentiation and apoptosis. p15 and p21 are cyclin-dependent kinase inhibitors, which arrest cell proliferation and serve as critical tumor suppressors. Here we report that the E3 ubiquitin ligase RLIM expression is downregulated in hepatocellular carcinoma patients, and correlated with p15 and p21 expression in clinical progression. In addition, we showed that RLIM overexpression suppresses the cell growth and arrests cell cycle progression of hepatocellular carcinoma. Mechanistically, we found that RLIM directly binds to MIZ1, disrupting the interaction between c-MYC and MIZ1, and enhancing p15 and p21 transcription. Our results demonstrate that RLIM is an important suppressor in hepatocellular carcinogenesis.


Regulatory T cells with a defect in inhibition on co-stimulation deteriorated primary biliary cholangitis.

  • Jianing Chen‎ et al.
  • Oncotarget‎
  • 2017‎

Regulatory T cells (Tregs) play an indispensable role in the progression of primary biliary cholangitis (PBC). Although Tregs could normalize costimulation in in vivo and in vitro models, it is obscure whether and how Tregs mediate these effects in PBC. Herein we focused on the quantitative and functional characteristics of Tregs in PBC. The number and proportion of Tregs, and the production of interleukin (IL)-10 were all significantly less in the PBC patients than in the healthy controls (HCs). In addition, compared to the HCs, the costimulatory CD86 of the circulation and liver were significantly higher in the patients with PBC. CD86 expression on CD1c+ cells negatively correlated with the proportion of Tregs. There was also a positive correlation between mayo risk score and the ratio of CD86/Treg. In vitro experiments showed that inhibition of CD86 expression on CD1c+ cells by Tregs was significantly weakened in the PBC patients. Furthermore, the autoantibodies from the PBC patients could promote CD86 expression on CD1c+ cells and transforming growth factor-β production by human hepatic stellate cells. Overall, Tregs declined in inhibition on co-stimulation expression in the presence of autoantibodies, which could be associated to PBC-related bile duct injury and fibrosis. This indicated that maintenance of balance of co-stimulation and Tregs could be beneficial for PBC.


Leptin promotes migration and invasion of breast cancer cells by stimulating IL-8 production in M2 macrophages.

  • Hong Cao‎ et al.
  • Oncotarget‎
  • 2016‎

This study aims to investigate the mechanisms underlying leptin-mediated crosstalk between tumor-associated macrophages (M2 macrophages) and breast cancer cells. THP1 human leukemic monocytes were induced to differentiate into M2 macrophages by PMA (100 nM) and IL-4 (20 ng/mL). Quantitative RT-PCR and Western blot revealed that leptin (100 nM) significantly increased the expression of leptin receptor (ObR) in the M2 macrophages (P < 0.01) and stimulated interleukin (IL)-8 expression in the M2 macrophages, mouse macrophage cells RAW264.7, and primary mouse peritoneal macrophages in a dose- and time-dependent manner. Leptin-induced IL-8 production was sensitive to the ERK inhibitor PD980590 (10 μmol/L), p38 MAPK inhibitor SB203580 (20 μmol/L), and anti-ObR neutralizing antibody (4 μg/mL). Leptin (100 ng/mL) substantially increased the phosphorylation of p38 and ERK1/2. Thus, leptin may induce IL-8 production in M2 macrophages by interacting with ObR to activate the p38 and ERK signaling pathways. Scratch and transwell chamber assay showed that both recombinant IL-8 and leptin-induced M2 macrophage-derived IL-8 promoted the migration and invasion of human breast cancer cells MCF7 and MDA-MB-231 (All P < 0.01). In a nude mice xenograft model of breast cancer (n = 5 per group), injection of leptin (0.1 μg/g) dramatically increased tumor volume and mass, reduced survival, exacerbated pulmonary metastasis, and elevated IL-8 and Ki67 expression in the tumor tissue (All P < 0.05) compared with PBS injection. Depletion of mouse macrophage by Clophosome®-clodronate liposome and injection of anti-mouse IL-8 neutralizing antibodies in the xenograft tumor significantly attenuated those leptin-mediated stimulations (All P < 0.05). These findings indicate that leptin may promote tumor growth and metastasis by stimulating IL-8 production in tumor-associated macrophage.


TWIST-1 promotes cell growth, drug resistance and progenitor clonogenic capacities in myeloid leukemia and is a novel poor prognostic factor in acute myeloid leukemia.

  • Nan Wang‎ et al.
  • Oncotarget‎
  • 2015‎

Alterations of TWIST-1 expression are often seen in solid tumors and contribute to tumorigenesis and cancer progression. However, studies concerning its pathogenic role in leukemia are scarce. Our study shows that TWIST-1 is overexpressed in bone marrow mononuclear cells of patients with acute myeloid leukemia (AML) and chronic myeloid leukemia (CML). Gain-of-function and loss-of-function analyses demonstrate that TWIST-1 promotes cell growth, colony formation and drug resistance of AML and CML cell lines. Furthermore, TWIST-1 is aberrantly highly expressed in CD34+CD38- leukemia stem cell candidates and its expression declines with differentiation. Down-modulation of TWIST-1 in myeloid leukemia CD34+ cells impairs their colony-forming capacity. Mechanistically, c-MPL, which is highly expressed in myeloid leukemia cells and associated with poor prognosis, is identified as a TWIST-1 coexpressed gene in myeloid leukemia patients and partially contributes to TWIST-1-mediated leukemogenic effects. Moreover, patients with higher TWIST-1 expression have shorter overall and event-free survival (OS and EFS) in AML. Multivariate analysis further demonstrates that TWIST-1 overexpression is a novel independent unfavourable predictor for both OS and EFS in AML. These data highlight TWIST-1 as a new candidate gene contributing to leukemogenesis of myeloid leukemia, and propose possible new avenues for improving risk and treatment stratification in AML.


FOXC1 promotes melanoma by activating MST1R/PI3K/AKT.

  • Jinhua Wang‎ et al.
  • Oncotarget‎
  • 2016‎

FOXC1 is a member of Forkhead box family transcription factors. We showed that FOXC1 level was increased in melanoma cells and tissues and correlated with hypomethylation of the FOXC1 gene. Overexpression of FOXC1 promoted proliferation, migration, invasion, colony formation and growth in 3D Matrigel of melanoma cells. FOXC1 increased MST1R and activated the PI3K/AKT pathway. Also, FOXC1 expression was associated with disease progression and poor prognosis of melanoma. We suggest that FOXC1 is a potential prognostic biomarker for treating melanoma and predicting outcome of patients.


Integrated analyses for genetic markers of polycystic ovary syndrome with 9 case-control studies of gene expression profiles.

  • Chenqi Lu‎ et al.
  • Oncotarget‎
  • 2017‎

Due to genetic heterogeneity and variable diagnostic criteria, genetic studies of polycystic ovary syndrome are particularly challenging. Furthermore, lack of sufficiently large cohorts limits the identification of susceptibility genes contributing to polycystic ovary syndrome. Here, we carried out a systematic search of studies deposited in the Gene Expression Omnibus database through August 31, 2016. The present analyses included studies with: 1) patients with polycystic ovary syndrome and normal controls, 2) gene expression profiling of messenger RNA, and 3) sufficient data for our analysis. Ultimately, a total of 9 studies with 13 datasets met the inclusion criteria and were performed for the subsequent integrated analyses. Through comprehensive analyses, there were 13 genetic factors overlapped in all datasets and identified as significant specific genes for polycystic ovary syndrome. After quality control assessment, there were six datasets remained. Further gene ontology enrichment and pathway analyses suggested that differentially expressed genes mainly enriched in oocyte pathways. These findings provide potential molecular markers for diagnosis and prognosis of polycystic ovary syndrome, and need in-depth studies on the exact function and mechanism in polycystic ovary syndrome.


Targeting a novel cancer-driving protein (LAPTM4B-35) by a small molecule (ETS) to inhibit cancer growth and metastasis.

  • Maojin Li‎ et al.
  • Oncotarget‎
  • 2016‎

Our previous studies demonstrated that LAPTM4B-35 is overexpressed in a variety of solid cancers including hepatocellular carcinoma (HCC), and is an independent factor for prognosis. LAPTM4B-35 overexpression causes carcinogenesis and enhances cancer growth, metastasis and multidrug resistance, and thus may be a candidate for therapeutic targeting. The present study shows ethylglyoxal bisthiosemicarbazon (ETS) has effective anticancer activity through LAPTM4B-35 targeting. Bel-7402 and HepG2 cell lines from human HCC were used as cell models in which LAPTM4B-35 is highly expressed, and a human fetal liver cell line was used as a control. The results showed ETS has a specific and pronounced lethal effect on HCC cells, but not on fetal liver cells in culture. ETS also attenuated growth and metastasis of human HCC xenograft in nude mice, and extended the life span of mice with HCC. ETS induced HCC cell apoptosis, and upregulated a large number of proapoptotic genes and downregulated antiapoptotic genes. When endogenous overexpression of LAPTM4B-35 was knocked down with RNAi, the killing effect of ETS on HepG2 cells was significantly attenuated. ETS also inhibited phosphorylation of LAPTM4B-35 Tyr285, which involves in activation of the PI3K/Akt signaling pathway induced by LAPTM4B-35 overexpression. In addition, the induction of alterations in quantity of c-Myc, Bcl-2, Bax, cyclinD1 and Akt-p molecules in HepG2 cells by LAPTM4B-35 overexpression could be reversed by ETS.


GSK-3β regulates tumor growth and angiogenesis in human glioma cells.

  • Peng Zhao‎ et al.
  • Oncotarget‎
  • 2015‎

Glioma accounts for the majority of primary malignant brain tumors in adults.


Rs2853677 modulates Snail1 binding to the TERT enhancer and affects lung adenocarcinoma susceptibility.

  • Xiaoting Li‎ et al.
  • Oncotarget‎
  • 2016‎

Genome wide association studies (GWAS) have shown that SNPs in non-coding regions are associated with inherited susceptibility to cancer. The effect of one single SNP, however, is weak. To identify potential co-factors of SNPs, we investigated the underlying mechanism by which SNPs affect lung cancer susceptibility. We found that rs2853677 is located within the Snail1 binding site in a TERT enhancer. This enhancer increases TERT transcription when juxtaposed to the TERT promoter. The binding of Snail1 to the enhancer disrupts enhancer-promoter colocalization and silences TERT transcription. The high risk variant of rs2853677 disrupts the Snail1 binding site and derepresses TERT expression in response to Snail1 upregulation, thus increasing lung adenocarcinoma susceptibility. Our data suggest that Snail1 may be a co-factor of rs2853677 for predicting lung adenocarcinoma susceptibility and prognosis.


Role and mechanism of miR-222 in arsenic-transformed cells for inducing tumor growth.

  • Min Wang‎ et al.
  • Oncotarget‎
  • 2016‎

High levels of arsenic in drinking water, soil, and air are associated with the higher incidences of several kinds of cancers worldwide, but the mechanism is yet to be fully discovered. Recently, a number of evidences show that dysregulation of microRNAs (miRNAs) induces carcinogenesis. In this study, we found miR-222 was upregulated in arsenic-transformed human lung epithelial BEAS-2B cells (As-T cells). Anti-miR-222 inhibitor treatment decreased cell proliferation, migration, tube formation, and induced apoptosis. In addition, anti-miR-222 inhibitor expression decreased tumor growth in vivo. We also found that inhibition of miR-222 induced the expression of its direct targets ARID1A and phosphatase and tensin homolog deleted on chromosome 10 (PTEN), and activated apoptosis of As-T cells in part through ARID1A downregulation. These results indicate that miR-222 plays an important role in arsenic-induced tumor growth.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: