Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 32 papers

Disulfiram inhibits TGF-β-induced epithelial-mesenchymal transition and stem-like features in breast cancer via ERK/NF-κB/Snail pathway.

  • Dan Han‎ et al.
  • Oncotarget‎
  • 2015‎

Disulfiram (DSF), an anti-alcoholism drug, has been reported as an inhibitor of NF-κB. NF-κB is involved in epithelial-mesenchymal transition (EMT) and self-renewal of breast cancer stem cells (CSCs). In this study, we treated MCF-7 and MDA-MB-231 breast cancer cells with TGF-β to induce EMT and cancer stem-like features and studied whether DSF can reverse this process. We found that DSF inhibited TGF-β induced EMT in breast cancer cells in a dose-dependent manner. Also, DSF inhibited EMT-associated stem-like features, migration and invasion of tumor cells as well as tumor growth in xenograft model. The activation of NF-κB was linked with EMT and stem-like cells. We conclude that DSF can suppress NF-κB activity and downregulate ERK/NF-κB/Snail pathway, leading to reverse EMT and stem-like features. Our data suggest that DSF inhibits EMT and stem-like properties in breast cancer cells associated with inhibition of the ERK/NF-κB/Snail pathway.


A rule-based algorithm for automatic bond type perception.

  • Qian Zhang‎ et al.
  • Journal of cheminformatics‎
  • 2012‎

Assigning bond orders is a necessary and essential step for characterizing a chemical structure correctly in force field based simulations. Several methods have been developed to do this. They all have advantages but with limitations too. Here, an automatic algorithm for assigning chemical connectivity and bond order regardless of hydrogen for organic molecules is provided, and only three dimensional coordinates and element identities are needed for our algorithm. The algorithm uses hard rules, length rules and conjugation rules to fix the structures. The hard rules determine bond orders based on the basic chemical rules; the length rules determine bond order by the length between two atoms based on a set of predefined values for different bond types; the conjugation rules determine bond orders by using the length information derived from the previous rule, the bond angles and some small structural patterns. The algorithm is extensively evaluated in three datasets, and achieves good accuracy of predictions for all the datasets. Finally, the limitation and future improvement of the algorithm are discussed.


IKKβ inhibition prevents fat-induced beta cell dysfunction in vitro and in vivo in rodents.

  • Aleksandar Ivovic‎ et al.
  • Diabetologia‎
  • 2017‎

We have previously shown that oxidative stress plays a causal role in beta cell dysfunction induced by fat. Here, we address whether the proinflammatory kinase inhibitor of (nuclear factor) κB kinase β (IKKβ), which is activated by oxidative stress, is also implicated.


Endoplasmic reticulum stress response in an INS-1 pancreatic beta-cell line with inducible expression of a folding-deficient proinsulin.

  • Taila Hartley‎ et al.
  • BMC cell biology‎
  • 2010‎

Cells respond to endoplasmic reticulum stress (ER) stress by activating the unfolded protein response. To study the ER stress response in pancreatic beta-cells we developed a model system that allows for pathophysiological ER stress based on the Akita mouse. This mouse strain expresses a mutant insulin 2 gene (C96Y), which prevents normal proinsulin folding causing ER stress and eventual beta-cell apoptosis. A double-stable pancreatic beta-cell line (pTet-ON INS-1) with inducible expression of insulin 2 (C96Y) fused to EGFP was generated to study the ER stress response.


Elevated matrix metalloproteinase-9 levels in neuronal extracellular vesicles in Alzheimer's disease.

  • Dongmei Gu‎ et al.
  • Annals of clinical and translational neurology‎
  • 2020‎

This study aimed to investigate plasma neuronally derived extracellular vesicle (NDEV) levels of core pathological markers [amyloid-β (Aβ) and phosphorylated tau] and inflammatory biomarkers, including interleukin 6 (IL-6) and matrix metalloproteinase-9 (MMP-9) in patients with Alzheimer's disease (AD).


Gemcitabine, cisplatin, and dexamethasone and ifosfamide, carboplatin, and etoposide regimens have similar efficacy as salvage treatment for relapsed/refractory aggressive lymphoma: A retrospectively comparative study.

  • Mi Mi‎ et al.
  • Medicine‎
  • 2020‎

In this study, our aim was to compare the efficacy and toxicity profiles of gemcitabine, cisplatin, and dexamethasone (GDP) and ifosfamide, carboplatin, and etoposide (ICE) regimens in the salvage treatment of relapsed/refractory lymphoma. A total of 110 patients with refractory/relapsed classical Hodgkin lymphoma (n = 22) or non-Hodgkin lymphoma (n = 88) who received GDP or ICE salvage regimens from January 2011 to July 2018 were retrospectively analyzed. Of the 110 patients, 50 patients received GDP, and 60 patients received ICE. The response could be evaluated in all patients. In the GDP group, 30 (60.0%) patients achieved overall response rate (ORR), and in the ICE group, the ORR was 56.6%. Of the classical Hodgkin lymphoma patients, the ORR were 72.8% and 54.6% in the GDP and ICE groups, respectively. Of the non-Hodgkin lymphoma patients, the ORR were 56.4% and 57.1% in the GDP and ICE groups, respectively. Grade I-II toxicity occurred in 16 (32.0%) patients in the GDP group and 18 patients (30.0%) in the ICE group; 14 (28.0%) patients had Grade III-IV toxicity in the GDP group, as did 20 (33.3%) patients in the ICE group. As a result, both GDP and ICE regimens are suitable for the treatment of recurrent/refractory lymphoma. The overall adverse reactions of both regimens are acceptable.


Interim PET/CT based on visual and semiquantitative analysis predicts survival in patients with diffuse large B-cell lymphoma.

  • Xiaoqian Li‎ et al.
  • Cancer medicine‎
  • 2019‎

The role of interim 18 F-FDG PET/CT (iPET/CT) in diffuse large B-cell lymphoma (DLBCL) remains controversial. The purpose of this study was to assess the prognostic value of iPET/CT in patients with newly diagnosed DLBCL according to visual and semiquantitative interpretation methods.


Identification of Hub Genes and Key Pathways Associated with Two Subtypes of Diffuse Large B-Cell Lymphoma Based on Gene Expression Profiling via Integrated Bioinformatics.

  • Zijian Liu‎ et al.
  • BioMed research international‎
  • 2018‎

There is a significant difference in prognosis between the germinal center B-cell (GCB) and activated B-cell (ABC) subtypes of diffuse large B-cell lymphoma (DLBCL). However, the signaling pathways and driver genes involved in these disparate subtypes are ambiguous. This study integrated three cohort profile datasets, including 250 GCB samples and 250 ABC samples, to elucidate potential candidate hub genes and key pathways involved in these two subtypes. Differentially expressed genes (DEGs) were identified. After Gene Ontology functional enrichment analysis of the DEGs, protein-protein interaction (PPI) network and sub-PPI network analyses were conducted using the STRING database and Cytoscape software. Subsequently, the Oncomine database and the cBioportal online tool were employed to verify the alterations and differential expression of the 8 hub genes (MME, CD44, IRF4, STAT3, IL2RA, ETV6, CCND2, and CFLAR). Gene set enrichment analysis was also employed to identify the intersection of the key pathways (JAK-STAT, FOXO, and NF-κB pathways) validated in the above analyses. These hub genes and key pathways could improve our understanding of the process of tumorigenesis and the underlying molecular events and may be therapeutic targets for the precise treatment of these two subtypes with different prognoses.


Ibrutinib as monotherapy versus combination therapy in Chinese patients with relapsed/refractory mantle cell lymphoma: A multicenter study.

  • Yuchen Zhang‎ et al.
  • Cancer medicine‎
  • 2022‎

Ibrutinib has revolutionized the treatment of mantle cell lymphoma (MCL). Both ibrutinib monotherapy and ibrutinib-based combination therapy are important salvage options for patients with relapsed/refractory (R/R) MCL. The real-world efficacy and safety profile of the two strategies in Chinese patients with R/R MCL remain unclarified.


Molecular epidemiology and genomic dynamics of Pseudomonas aeruginosa isolates causing relapse infections.

  • Cong Shen‎ et al.
  • Microbiology spectrum‎
  • 2023‎

Pseudomonas aeruginosa (P. aeruginosa) is one of the leading causes of chronic infections, including reinfection, relapse, and persistent infection, especially in cystic fibrosis patients. Relapse P. aeruginosa infections are more harmful because of repeated hospitalization and undertreatment of antimicrobials. However, relapse P. aeruginosa infection in China remains largely unknown. Herein, we performed a 3-year retrospective study from 2019 to 2022 in a tertiary hospital, which included 442 P. aeruginosa isolates from 196 patients. Relapse infection was identified by screening clinical records and whole-genome sequencing (WGS). We found that 31.6% (62/196) of patients had relapsed infections. The relapse incidence of carbapenem-resistant P. aeruginosa infection (51.4%) is significantly higher than that of carbapenem-susceptible P. aeruginosa infection (20.2%, P < 0.0001). These isolates were assigned to 50 distinct sequence types and sporadically distributed in phylogeny, indicating that relapsed infections were not caused by certain lineages. Fast adaptation and evolution of P. aeruginosa isolates were reflected by dynamic changes of antimicrobial resistance, gene loss and acquisition, and single-nucleotide polymorphisms during relapse episodes. Remarkably, a convergent non-synonymous mutation that occurs in a pyochelin-associated virulence gene fptA (T1056C, M252T) could be a considerable target for the diagnosis and treatment of relapse P. aeruginosa infection. These findings suggest that integrated utilization of WGS and medical records provides opportunities for improved diagnostics of relapsed infections. Continued surveillance of the genomic dynamics of relapse P. aeruginosa infection will generate further knowledge for optimizing treatment and prevention in the future.IMPORTANCEPseudomonas aeruginosa is a predominant pathogen that causes various chronic infections. Relapse infections promote the adaptation and evolution of antimicrobial resistance and virulence of P. aeruginosa, which obscure evolutionary trends and complicate infection management. We observed a high incidence of relapse P. aeruginosa infection in this study. Whole-genome sequencing (WGS) revealed that relapse infections were not caused by certain lineages of P. aeruginosa isolates. Genomic dynamics of relapse P. aeruginosa among early and later stages reflected a plasticity scattered through the entire genome and fast adaptation and genomic evolution in different ways. Remarkably, a convergent evolution was found in a significant virulence gene fptA, which could be a considerable target for diagnosis and treatment. Taken together, our findings highlight the importance of longitudinal surveillance of relapse P. aeruginosa infection in China since cystic fibrosis is rare in Chinese. Integrated utilization of WGS and medical records provides opportunities for improved diagnostics of relapse infections.


Expression of Nischarin negatively correlates with estrogen receptor and alters apoptosis, migration and invasion in human breast cancer.

  • Chan Chang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2017‎

Nischarin, a novel integrin binding protein, has been demonstrated its negative effects on cell migration and invasion. However, the biological role of Nischarin in breast cancer has not been fully elucidated yet. Our study aimed to analyze the association between Nischarin expression and clinical features of breast cancer patients, and further investigate the role of Nischarin in breast cancer cells apoptosis, migration and invasion. Results showed that Nischarin expression was significantly lower in breast cancer tissues (37.8%, 23/67) than in normal tissues (61.8%, 21/34; P < 0.05), and the expression of Nischarin significantly negatively correlated with estrogen receptor status. Similarly, Nischarin expression was highest in normal breast cell line HBL-100 while triple-negative breast cancer cell line MDA-MB-231 had the lowest expression of Nischarin. Further experiments demonstrated that overexpression of Nischarin may induce apoptosis, and inhibit cell migration and invasion. The present data confirmed that Nishcharin might be a novel tumor suppressor and plays an important role in breast cancer cell apoptosis and metastasis, which can be used as a potential therapeutic target for breast cancer treatment.


Disulfiram Improves the Anti-PD-1 Therapy Efficacy by Regulating PD-L1 Expression via Epigenetically Reactivation of IRF7 in Triple Negative Breast Cancer.

  • Xin Zheng‎ et al.
  • Frontiers in oncology‎
  • 2021‎

Immune checkpoint blockade (ICB), particularly programmed death 1 (PD-1) and its ligand (PD-L1), has shown considerable clinical benefits in patients with various cancers. Many studies show that PD-L1 expression may be biomarkers to help select responders for anti-PD-1 treatment. Therefore, it is necessary to elucidate the molecular mechanisms that control PD-L1 expression. As a potential chemosensitizer and anticancer drug, disulfiram (DSF) kills tumor cells via regulating multiple signaling pathways and transcription factors. However, its effect on tumor immune microenvironment (TIME) remains unclear. Here, we showed that DSF increased PD-L1 expression in triple negative breast cancer (TNBC) cells. Through bioinformatics analysis, we found that DNMT1 was highly expressed in TNBC tissue and PD-L1 was negatively correlated with IRF7 expression. DSF reduced DNMT1 expression and activity, and hypomethylated IRF7 promoter region resulting in upregulation of IRF7. Furthermore, we found DSF enhanced PD-L1 expression via DNMT1-mediated IRF7 hypomethylation. In in vivo experiments, DSF significantly improved the response to anti-PD-1 antibody (Ab) in 4T1 breast cancer mouse model. Immunohistochemistry staining showed that granzyme B+ and CD8+ T cells in the tumor tissues were significantly increased in the combination group. By analyzing the results of the tumor tissue RNA sequencing, four immune-associated pathways were significantly enriched in the DSF joint anti-PD-1 Ab group. In conclusion, we found that DSF could upregulate PD-L1 in TNBC cells and elucidated its mechanism. Our findings revealed that the combination of DSF and anti-PD-1 Ab could activate TIME to show much better antitumor efficacy than monotherapy.


Chidamide plus prednisone, etoposide, and thalidomide for untreated angioimmunoblastic T-cell lymphoma in a Chinese population: A multicenter phase II trial.

  • Yawen Wang‎ et al.
  • American journal of hematology‎
  • 2022‎

Angioimmunoblastic T-cell lymphoma (AITL) is a common type of peripheral T-cell lymphoma (PTCL) with a poor prognosis, and an effective first-line therapy is lacking. Chidamide is a selective histone deacetylase inhibitor and has been approved by the China Food and Drug Administration for relapsed or refractory PTCL. We conducted a multicenter phase II clinical trial combining chidamide with prednisone, etoposide, and thalidomide (CPET regimen) for a total of eight cycles in untreated AITL patients in China. The primary objectives were the overall response rate (ORR) and complete remission (CR) rate after eight cycles of the CPET regimen. The secondary endpoints were progression-free survival (PFS) and safety. Of the 71 enrolled patients, 51 completed the eight cycles of the CPET regimen. The ORR and CR of the 51 patients were 90.2 and 54.9%, respectively. After a median follow-up of 11.4 months (95% confidence interval [CI], 9.9-17.0), the median PFS of the 51 patients was 42.6 months (95% CI, 27.7-not reached) and the median overall survival (OS) was not reached. The 2-year PFS rate and OS rate were 66.5 and 82.2%, respectively. Sixty-eight patients received at least one cycle of CPET regimen and were included as the safety assessment population. The most common grade 3/4 adverse event was neutropenia (n = 22, 32.3%). Twelve patients showed treatment-related infections and recovered from antibiotic therapy; the other adverse events were mostly mild and reversible. The oral CPET regimen is an effective, tolerable, and economical choice for untreated AITL in a Chinese population. This trial was registered in www.clinicaltrials.gov as NCT03273452.


Accurate interpretation of p53 immunohistochemical patterns is a surrogate biomarker for TP53 alterations in large B-cell lymphoma.

  • Xinyi Li‎ et al.
  • BMC cancer‎
  • 2023‎

To clarify the relationship between p53 immunohistochemistry (IHC) staining and TP53 alterations (including mutations and deletions) in large B-cell lymphomas (LBCLs) and to explore the possibility of p53 IHC expression patterns as surrogate markers for TP53 alterations.


The selective interaction between silica nanoparticles and enzymes from molecular dynamics simulations.

  • Xiaotian Sun‎ et al.
  • PloS one‎
  • 2014‎

Nanoscale particles have become promising materials in many fields, such as cancer therapeutics, diagnosis, imaging, drug delivery, catalysis, as well as biosensors. In order to stimulate and facilitate these applications, there is an urgent need for the understanding of the interaction mode between the nano-particles and proteins. In this study, we investigate the orientation and adsorption between several enzymes (cytochrome c, RNase A, lysozyme) and 4 nm/11 nm silica nanoparticles (SNPs) by using molecular dynamics (MD) simulation. Our results show that three enzymes are adsorbed onto the surfaces of both 4 nm and 11 nm SNPs during our MD simulations and the small SNPs induce greater structural stabilization. The active site of cytochrome c is far away from the surface of 4 nm SNPs, while it is adsorbed onto the surface of 11 nm SNPs. We also explore the influences of different groups (-OH, -COOH, -NH2 and CH3) coated onto silica nanoparticles, which show significantly different impacts. Our molecular dynamics results indicate the selective interaction between silicon nanoparticles and enzymes, which is consistent with experimental results. Our study provides useful guides for designing/modifying nanomaterials to interact with proteins for their bio-applications.


ATF6β regulates the Wfs1 gene and has a cell survival role in the ER stress response in pancreatic β-cells.

  • Tanya Odisho‎ et al.
  • Experimental cell research‎
  • 2015‎

Endoplasmic reticulum (ER) stress is implicated in pancreatic β-cell dysfunction and death resulting in type 2 diabetes. Activating transcription factor 6 (ATF6) is an essential component of the Unfolded Protein Response (UPR) and consists of two isoforms, ATF6α and ATF6β. Here we investigated the role of ATF6β. ATF6β mRNA was detected in pancreatic β-cell lines and rodent and human islets. We also detected ATF6β protein and production of the active form (ATF6βp60) in response to ER stress. Knock-down of ATF6β in INS-1 832/13 insulinoma cells did not affect mRNA induction of several major UPR genes in response to ER stress, suggesting ATF6β is not essential for the basic UPR. Expressing active ATF6βp60 or ATF6αp50 followed by microarray analysis showed that they regulate similar UPR genes, although some genes such as Wfs1 are ATF6β-specific. ATF6β, but not ATF6α, is able to bind the Wfs1 promoter and induce Wfs1 gene and protein expression. Knock-down of ATF6β increased the susceptibility of β-cells to ER stress-induced apoptosis, while overexpression of active ATF6βp60 reduced apoptosis. Thus, ATF6β is not essential for induction of most UPR genes, but is required to maintain cell survival in β-cells undergoing chronic ER stress, which in part relates to its ability to induce Wfs1, a pro-survival gene.


Endoplasmic reticulum redox state is not perturbed by pharmacological or pathological endoplasmic reticulum stress in live pancreatic β-cells.

  • Irmgard Schuiki‎ et al.
  • PloS one‎
  • 2012‎

Accumulation of unfolded, misfolded and aggregated proteins in the endoplasmic reticulum (ER) causes ER stress. ER stress can result from physiological situations such as acute increases in secretory protein biosynthesis or pathological conditions that perturb ER homeostasis such as alterations in the ER redox state. Here we monitored ER redox together with transcriptional output of the Unfolded Protein Response (UPR) in INS-1 insulinoma cells stably expressing eroGFP (ER-redox-sensor) and mCherry protein driven by a GRP78 promoter (UPR-sensor). Live cell imaging, flow cytometry and biochemical characterization were used to examine these parameters in response to various conditions known to induce ER stress. As expected, treatment of the cells with the reducing agent dithiothreitol caused a decrease in the oxidation state of the ER accompanied by an increase in XBP-1 splicing. Unexpectedly however, other treatments including tunicamycin, thapsigargin, DL-homocysteine, elevated free fatty acids or high glucose had essentially no influence on the ER redox state, despite inducing ER stress. Comparable results were obtained with dispersed rat islet cells expressing eroGFP. Thus, unlike in yeast cells, ER stress in pancreatic β-cells is not associated with a more reducing ER environment.


miR-30a/SOX4 Double Negative Feedback Loop is modulated by Disulfiram and regulates EMT and Stem Cell-like properties in Breast Cancer.

  • Zijian Liu‎ et al.
  • Journal of Cancer‎
  • 2021‎

Background: Both epithelial-to-mesenchymal transition (EMT) and cancer stem cells play important roles in development and progression of breast cancer. MicroRNA (miR)-30 family members have been reported to be associated with the regulation of EMT and stem cell phenotypes, however, the underlying molecular mechanisms are not well understood. Methods: miR-30a stable transfectants of breast cancer cell lines were created using a lentiviral system. Bioinformatics analysis was performed to explore miR-30a target genes and SOX4 was selected and identified by dual luciferase reporter assay. The effects of miR-30a and target gene SOX4 on EMT and CSC phenotypes in breast cancer were explored in vitro and in vivo. Results: Overexpression of miR-30a in breast cancer cells inhibited EMT and CSC phenotypes by targeting SOX4. Luciferase reporter assay confirmed that miR-30a directly targeted 3'UTR of SOX4, and formed a double-negative feedback loop with SOX4. Functional experiments demonstrated that knockdown of SOX4 suppressed EMT and CSC phenotypes of breast cancer cells through TGF-β/SMAD pathway, which was consistent with the inhibitory effects by overexpression of miR-30a. Additionally, we found disulfiram can upregulate miR-30a expression, and high miR-30a expression was associated with a good prognosis in breast cancer patients through TCGA database. Conclusion: Our findings suggest a novel double-negative loop between miR-30a and SOX4 mediated regulation of EMT and CSC features in breast cancer through TGF-β/SMAD pathway, highlighting a novel therapeutic target for breast cancer.


3.0 T multi-parametric MRI reveals metabolic and microstructural abnormalities in the posterior visual pathways in patients with thyroid eye disease.

  • Lan Luo‎ et al.
  • Frontiers in neuroscience‎
  • 2023‎

We aim to explore the microstructural and metabolic changes in visual pathways in patients with thyroid eye disease (TED) using 3T multi-parametric MRI.


Altered serum metabolome associated with vascular calcification developed from CKD and the critical pathways.

  • Ruyu Tan‎ et al.
  • Frontiers in cardiovascular medicine‎
  • 2023‎

Vascular calcification (VC) is more likely to be detected in the chronic kidney disease (CKD) population. The mechanism of VC development from CKD is different from that for simple VC and has always been a major research area. The aim of this study was to detect alterations in the metabolome during development of VC in CKD and to identify the critical metabolic pathways and metabolites involved in its pathogenesis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: