Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 68 papers

A disordered region in the EvpP protein from the type VI secretion system of Edwardsiella tarda is essential for EvpC binding.

  • Wentao Hu‎ et al.
  • PloS one‎
  • 2014‎

The type VI secretion system (T6SS) of pathogenic bacteria plays important roles in both virulence and inter-bacterial competitions. The effectors of T6SS are presumed to be transported either by attaching to the tip protein or by interacting with HcpI (haemolysin corregulated protein 1). In Edwardsiella tarda PPD130/91, the T6SS secreted protein EvpP (E. tarda virulent protein P) is found to be essential for virulence and directly interacts with EvpC (Hcp-like), suggesting that it could be a potential effector. Using limited protease digestion, nuclear magnetic resonance heteronuclear Nuclear Overhauser Effects, and hydrogen-deuterium exchange mass spectrometry, we confirmed that the dimeric EvpP (40 kDa) contains a substantial proportion (40%) of disordered regions but still maintains an ordered and folded core domain. We show that an N-terminal, 10-kDa, protease-resistant fragment in EvpP connects to a shorter, 4-kDa protease-resistant fragment through a highly flexible region, which is followed by another disordered region at the C-terminus. Within this C-terminal disordered region, residues Pro143 to Ile168 are essential for its interaction with EvpC. Unlike the highly unfolded T3SS effector, which has a lower molecular weight and is maintained in an unfolded conformation with a dedicated chaperone, the T6SS effector seems to be relatively larger, folded but partially disordered and uses HcpI as a chaperone.


Down-regulation of BTG1 by miR-454-3p enhances cellular radiosensitivity in renal carcinoma cells.

  • Xin Wu‎ et al.
  • Radiation oncology (London, England)‎
  • 2014‎

B cell translocation gene 1 (BTG1) has long been recognized as a tumor suppressor gene. Recent reports demonstrated that BTG1 plays an important role in progression of cell cycle and is involved in cellular response to stressors. However, the microRNAs mediated regulatory mechanism of BTG1 expression has not been reported so far. MicroRNAs can effectively influence tumor radiosensitivity by preventing cell cycle progression, resulting in enhancement of the cytotoxicity of radiotherapy efficacy. This study aimed to demonstrating the effects of microRNAs on the BTG1 expression and cellular radiosensitivity.


Berberine Improves Intestinal Motility and Visceral Pain in the Mouse Models Mimicking Diarrhea-Predominant Irritable Bowel Syndrome (IBS-D) Symptoms in an Opioid-Receptor Dependent Manner.

  • Chunqiu Chen‎ et al.
  • PloS one‎
  • 2015‎

Berberine and its derivatives display potent analgesic, anti-inflammatory and anticancer activity. Here we aimed at characterizing the mechanism of action of berberine in the gastrointestinal (GI) tract and cortical neurons using animal models and in vitro tests.


SMAD-6, -7 and -9 are potential molecular biomarkers for the prognosis in human lung cancer.

  • Shuxian Pan‎ et al.
  • Oncology letters‎
  • 2020‎

SMADs, a family of proteins that function as signal transducers and transcriptional regulators to regulate various signaling pathways, including the transforming growth factor-β signaling pathway, are similar to the mothers against decapentaplegic family of genes and the sma gene family in Caenorhabditis elegans. SMADs generate context-dependent modulation by interacting with various sequence-specific transcription factors, such as E2F4/5, c-Fos, GATA3, YY1 and SRF, which have been found to serve a key role in lung carcinoma oncogenesis and progression. However, the prognostic values of the eight SMADs in lung cancer have not been fully understood. In the present study, the expression levels and survival data of SMADs in patients with lung carcinoma from the Oncomine, Gene Expression Profiling Interactive Analysis, Kaplan-Meier plotter and cBioPortal databases were downloaded and analyzed. It was found that the mRNA expression levels of SMAD-6, -7 and -9 were decreased in lung adenocarcinoma and squamous cell carcinoma compared with that in adjacent normal tissues, while there was no significant difference in SMADs 1-5. Survival analysis revealed that not only were low transcriptional levels of SMAD-6, -7 and -9 associated with low overall survival but they also had prognostic role for progression-free survival and post-progression survival (P<0.05) in patients with lung carcinoma. In conclusion, the present study demonstrated that SMAD-6, -7 and -9 are potential biomarkers for the prognosis of patients with lung carcinoma.


Maturation of the Acute Hepatic TLR4/NF-κB Mediated Innate Immune Response Is p65 Dependent in Mice.

  • Miguel A Zarate‎ et al.
  • Frontiers in immunology‎
  • 2020‎

Compared to adults, neonates are at increased risk of infection. There is a growing recognition that dynamic qualitative and quantitative differences in immunity over development contribute to these observations. The liver plays a key role as an immunologic organ, but whether its contribution to the acute innate immune response changes over lifetime is unknown. We hypothesized that the liver would activate a developmentally-regulated acute innate immune response to intraperitoneal lipopolysaccharide (LPS). We first assessed the hepatic expression and activity of the NF-κB, a key regulator of the innate immune response, at different developmental ages (p0, p3, p7, p35, and adult). Ontogeny of the NF-κB subunits (p65/p50) revealed a reduction in Rela (p65) and Nfkb1 (p105, precursor to p50) gene expression (p0) and p65 subunit protein levels (p0 and p3) vs. older ages. The acute hepatic innate immune response to LPS was associated by the degradation of the NF-κB inhibitory proteins (IκBα and IκBβ), and nuclear translocation of the NF-κB subunit p50 in all ages, whereas nuclear translocation of the NF-κB subunit p65 was only observed in the p35 and adult mouse. Consistent with these findings, we detected NF-κB subunit p65 nuclear staining exclusively in the LPS-exposed adult liver compared with p7 mouse. We next interrogated the LPS-induced hepatic expression of pro-inflammatory genes (Tnf, Icam1, Ccl3, and Traf1), and observed a gradually increase in gene expression starting from p0. Confirming our results, hepatic NF-κB subunit p65 nuclear translocation was associated with up-regulation of the Icam1 gene in the adult, and was not detected in the p7 mouse. Thus, an inflammatory challenge induces an NF-κB-mediated hepatic innate immune response activation across all developmental ages, but nuclear translocation of the NF-κB subunit p65 and associated induction of pro-inflammatory genes occurred only after the first month of life. Our results demonstrate that the LPS-induced hepatic innate immune response is developmentally regulated by the NF-κB subunit p65 in the mouse.


Lowering iron level protects against bone loss in focally irradiated and contralateral femurs through distinct mechanisms.

  • Jian Zhang‎ et al.
  • Bone‎
  • 2019‎

Radiation therapy leads to increased risk of late-onset fragility and bone fracture due to the loss of bone mass. On the other hand, iron overloading causes osteoporosis by enhancing bone resorption. It has been shown that total body irradiation increases iron level, but whether the systemic bone loss is related to the changes in iron level and hepcidin regulation following bone irradiation remains unknown. To investigate the potential link between them, we first created an animal model of radiation-induced systemic bone loss by targeting the mid-shaft femur with a single 2 Gy dose of X-rays. We found that mid-shaft femur focal irradiation led to structural deterioration in the distal region of the trabecular bone with increased osteoclasts surface and expressions of bone resorption markers in both irradiated and contralateral femurs relative to non-irradiated controls. Following irradiation, reduced hepcidin activity of the liver contributed to elevated iron levels in the serum and liver. By injecting hepcidin or deferoxamine (an iron chelator) to reduce iron level, deterioration of trabecular bone microarchitecture in irradiated mice was abrogated. The ability of iron chelation to inhibit radiation-induced osteoclast differentiation was observed in vitro as well. We further showed that ionizing radiation (IR) directly stimulated osteoclast differentiation and bone resorption in bone marrow cells isolated not from contralateral femurs but from directly irradiated femurs. These results suggest that increased iron levels after focal radiation is at least one of the main reasons for systemic bone loss. Furthermore, bone loss in directly irradiated bones is not only due to the elevated iron level, but also from increased osteoclast differentiation. In contrast, the bone loss in the contralateral femurs is mainly due to the elevated iron level induced by IR alone. These novel findings provide proof-of-principle evidence for the use of iron chelation or hepcidin as therapeutic treatments for IR-induced osteoporosis.


Comprehensive Bioinformatics Analysis to Identify the Gene HMMR Associated With Lung Adenocarcinoma Prognosis and Its Mechanism of Action in Multiple Cancers.

  • Jianguang Shi‎ et al.
  • Frontiers in oncology‎
  • 2021‎

Lung cancer is the third most frequently diagnosed cancer in the world, with lung adenocarcinoma (LUAD) as the most common pathological type. But studies on the predictive effect of a single gene on LUAD are limited. We aimed to discover new predictive markers for LUAD.


Safety Evaluation and Probiotic Potency Screening of Akkermansia muciniphila Strains Isolated from Human Feces and Breast Milk.

  • Fengyi Hou‎ et al.
  • Microbiology spectrum‎
  • 2023‎

Akkermansia muciniphila is considered a next-generation probiotic because of its immense potential to regulate disorders. We isolated 31 strains of A. muciniphila from feces or breast milk of healthy people. After genome sequencing, assembly, and analysis, we selected six strains (AM01 to AM06) for further exploration. We first analyzed their general characteristics, including morphological description, growth characteristics, and physiological and biochemical characteristics, and then confirmed their genetic characteristics, including GC content, putative virulence factors, and antibiotic resistance genes. We next investigated the tolerance of these strains to artificial gastric and intestinal fluids and bile salts to evaluate their survival potential in the digestive tract. Drug sensitivity tests were also conducted based on the analysis of the antibiotic resistance genes of these strains. Furthermore, we examined the genetic stability and acute toxicity of two strains (AM02 and AM06) in mice. Finally, the safety of AM06 was evaluated in normal mice and nude mice. AM06 exhibited adaptability to pH changes. Since AM02 and AM03 showed more resistance to antibiotics than AM01 and AM04 to AM06, their potential clinical application may be limited. Both AM02 and AM06 were genetically and phenotypically stable and safe in normal mice, and AM06 was safe in nude mice. Considering all this together, AM06 is a safe A. muciniphila strain and exhibits a great potential for use as a probiotic strain among the isolated strains. IMPORTANCE In this study, we isolated 30 strains of Akkermansia muciniphila from different samples of human feces, and for the first time we isolated an A. muciniphila strain from human breast milk. This isolation verified the existence of microbes in human breast milk, which suggests that A. muciniphila can be vertically propagated from mother to infant and participates in the formation of the early gut microbiome. We then systematically evaluated the potential for use as a probiotic of this A. muciniphila strains according to the FAO/WHO recommendation. We confirmed that the AM06 strain isolated from breast milk has no virulence factors and is genetically stable and nonpathogenic for both normal mice and nude mice. Moreover, its tolerance to pH changes and bile salts indicates its desirable probiotic properties. Thus, we propose that the AM06 strain of A. muciniphila is safe for use as a probiotic candidate.


Functional ultrasound imaging reveals 3D structure of orientation domains in ferret primary visual cortex.

  • Wentao Hu‎ et al.
  • NeuroImage‎
  • 2023‎

The sensory cortex is organized into "maps" that represent sensory space across cortical space. In primary visual cortex (V1) of highly visual mammals, multiple visual feature maps are organized into a functional architecture anchored by orientation domains: regions containing neurons preferring the same stimulus orientation. Although the pinwheel-like structure of orientation domains is well-characterized in the superficial cortical layers in dorsal regions of V1, the 3D shape of orientation domains spanning all 6 cortical layers and across dorsal and ventral regions of V1 has never been revealed.


PRC1 promotes cell proliferation and cell cycle progression by regulating p21/p27-pRB family molecules and FAK-paxillin pathway in non-small cell lung cancer.

  • Zhigang Liang‎ et al.
  • Translational cancer research‎
  • 2019‎

This study aimed to demonstrate the function and molecular mechanism of protein regulator of cytokinesis 1 (PRC1) in the carcinogenesis of non-small cell lung cancer (NSCLC).


LncRNA NEAT1 stabilized Wnt3a via U2AF2 and activated Wnt/β-catenin pathway to alleviate ischemia stroke induced injury.

  • Zhiwen Zhou‎ et al.
  • Brain research‎
  • 2022‎

Ischaemic stroke is the leading cause of mortality and disability in the world. LncRNA NEAT1 has been shown to play an important role in ischaemic injury, but the molecular mechanism remains unclear.


Benefits of successful percutaneous coronary intervention in chronic total occlusion patients with diabetes.

  • Shuai Zhao‎ et al.
  • Cardiovascular diabetology‎
  • 2022‎

Diabetes was commonly seen in chronic total occlusion (CTO) patients but data regarding the impact of successful percutaneous coronary intervention (PCI) on clinical outcome of CTO patients with diabetes was controversial. And importantly, no studies have compared quality of life (QOL) after CTO-PCI in patients with and without diabetes.


Susceptibility to caspofungin is regulated by temperature and is dependent on calcineurin in Candida albicans.

  • Lijun Zheng‎ et al.
  • Microbiology spectrum‎
  • 2023‎

Echinocandins are the newest antifungal drugs and are first-line treatment option for life-threatening systemic infections. Due to lack of consensus regarding what temperature should be used when evaluating susceptibility of yeasts to echinocandins, typically either 30°C, 35°C, or 37°C is used. However, the impact of temperature on antifungal efficacy of echinocandins is unexplored. In the current study, we demonstrated that Candida albicans laboratory strain SC5314 was more susceptible to caspofungin at 37°C than at 30°C. We also found that calcineurin was required for temperature-modulated caspofungin susceptibility. Surprisingly, the altered caspofungin susceptibility was not due to differential expression of some canonical genes such as FKS, CHS, or CHT genes. The molecular mechanism of temperature-modulated caspofungin susceptibility is undetermined and deserves further investigations.


Overexpression of Ras-Related C3 Botulinum Toxin Substrate 2 Radiosensitizes Melanoma Cells In Vitro and In Vivo.

  • Wentao Hu‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2019‎

Radioresistance is the major obstacle in the radiotherapy of the malignant melanoma. Thus, it is of importance to increase the radiosensitivity of melanoma cells. In the present study, the radioresistant melanoma cell line OCM-1 with inducible overexpression of Ras-related C3 botulinum toxin substrate 2 was established based on a radiation-inducible early growth response gene (Egr-1) promoter. The effects of Ras-related C3 botulinum toxin substrate 2 overexpression on the radiosensitivity of melanoma cells exposed to either X-rays or carbon ion beams were evaluated in cultured cells as well as xenograft tumor models. In addition, both reactive oxygen species yield and the NADPH oxidase activity were measured in the irradiated melanoma cells. It was found that the radiation-inducible overexpression of Ras-related C3 botulinum toxin substrate 2 sensitized the melanoma cells to both X-rays and carbon ion irradiation by enhancing the NADPH oxidase activity and the subsequent reactive oxygen species production. Besides, the overexpression of Ras-related C3 botulinum toxin substrate 2 enhanced the tumor-killing effect of radiotherapy in xenograft tumors significantly. The results of this study indicate that Ras-related C3 botulinum toxin substrate 2 is promising in increasing the radiosensitivity of melanoma cells, which provides experimental evidence and theoretical basis for clinical radiosensitization of the malignant melanoma.


Effects of shielding on the induction of 53BP1 foci and micronuclei after Fe ion exposures.

  • Wentao Hu‎ et al.
  • Journal of radiation research‎
  • 2014‎

High atomic number and high-energy (HZE) particles in deep space are of low abundance but substantially contribute to the biological effects of space radiation. Shielding is so far the most effective way to partially protect astronauts from these highly penetrating particles. However, simulated calculations and measurements have predicted that secondary particles resulting from the shielding of cosmic rays produce a significant fraction of the total dose and dose equivalent. In this study, we investigated the biological effects of secondary radiation with two cell types, and with cells exposed in different phases of the cell cycle, by comparing the biological effects of a 200 MeV/u iron beam with a shielded beam in which the energy of the iron ion beam was decreased from 500 MeV/u to 200 MeV/u with PMMA, polyethylene (PE), or aluminum. We found that beam shielding resulted in increased induction of 53BP1 foci and micronuclei in a cell-type-dependent manner compared with the unshielded 200 MeV/u Fe ion beam. These findings provide experimental proof that the biological effects of secondary particles resulting from the interaction between HZE particles and shielding materials should be considered in shielding design.


In vivo Imaging of a Novel Strain of Bacteroides fragilis via Metabolic Labeling.

  • Wenye Xu‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Non-toxigenic Bacteroides fragilis is regarded as a potential candidate for probiotic owing to its various advantages. We previously isolated a new strain of B. fragilis (ZY-312) and verified its biosafety and capability of inhibiting the growth of pathogens in vivo. However, the colonization of ZY-312 in gastrointestinal (GI) tract remains to be determined. To track the colonization of ZY-312, mice were gavaged with ZY-312 labeled by means of metabolic oligosaccharide engineering and bioorthogonal click chemistry or given AF647-dibenzocyclooctyne (DIBO) directly. Then the fluorescence was detected in GI tract, spleen and kidneys. Results showed that ZY-312 could be labeled by metabolic oligosaccharide engineering, and the optimal incubation time with AF647-DIBO was 5 h in vitro. Following oral gavage with AF647-DIBO labeled ZY-312 or AF647-DIBO alone, mice were subjected to in vivo imaging and the fluorescence intensity was similar in both groups 3 h, 6 h, and 12 h post the gavage. The fluorescence of AF647-DIBO group disappeared 24 h post gavage which was probably due to the excretion via GI tract. While the fluorescence of AF647-DIBO labeled ZY-312 retained in the cecum for as long as 48 h. Immunofluorescence assay further confirmed that labeled ZY-312 transiently colonized not only in cecum but also in stomach, ileum and colon of mice 48 h post-gavage and that no massive accumulation of ZY-312 was detected in other organs such as kidneys and spleen. In conclusion, ZY-312 could transiently colonize in GI tract, mainly in cecum, for at least 48 h, and it hardly disseminate to other organs, which shed new light on the future development of B. fragilis as a probiotic product.


Complete Technical Scheme for Automatic Biological Dose Estimation Platform.

  • Hong Dai‎ et al.
  • Dose-response : a publication of International Hormesis Society‎
  • 2018‎

To establish a complete technical solution for the automatic radiation biological dose estimation platform for biological dose estimation and classification of the wounded in large-scale radiation accidents, the "dose-effect curve by dicentric chromosome (DIC) automatic analysis" was established and its accuracy was verified. The effects of analyzed cell number and the special treatment of the culture on dose estimation by DIC automatic analysis were studied. Besides, sample processing capabilities of the special equipments were tested. The fitted "dose-effect curve by DIC automatic analysis" was presented as follows: Y = (0.01806 ± 0.00032) D 2 + (0.01279 ± 0.00084) D + (0.0004891 ± 0.0001358) (R 2 = 0.961). Three-gradient scanning method, culture refrigeration method, and interprofessional collaboration under extreme conditions were proposed to improve the detection speed, prolong the sample processing time window, and reduce the equipment investment. In addition, the optimized device allocation ratio for the automatic biological dose estimation laboratory was proposed to eliminate the efficiency bottleneck. The complete set of technical solutions for the high-throughput automatic biological dose estimation laboratory proposed in this study can meet the requirements of early classification and rapid biological dose assessment of the wounded during the large-scale nuclear radiation events, and it is worthy of further promotion.


Suppression of Nestin reveals a critical role for p38-EGFR pathway in neural progenitor cell proliferation.

  • Wentao Hu‎ et al.
  • Oncotarget‎
  • 2016‎

The expression of intermediate filament Nestin is necessary for the neural progenitor cells (NPCs) to maintain stemness, but the underlying cellular and molecular mechanism remains unclear. In this study, we demonstrated that Nestin is required for the self-renew of NPCs through activating MAPK and EGFR pathways. Knockdown of Nestin by shRNA inhibited cell cycle progression and proliferation in mouse NPCs. Moreover, suppression of Nestin reduced expression of the epidermal growth factor receptor (EGFR) in NPCs and inhibited the mitogenic effects of EGF on these cells. Treatment of NPCs with p38-MAPK inhibitor PD169316 reversed cell cycle arrest caused by the knockdown of Nestin. Our findings indicate that Nestin promotes NPC proliferation via p38-MAPK and EGFR pathways, and reveals the necessity of these pathways in NPCs self-renewal.


Ecto-5'-nucleotidase (CD73) is a biomarker for clear cell renal carcinoma stem-like cells.

  • Lei Song‎ et al.
  • Oncotarget‎
  • 2017‎

Identification of a specific biomarker for cancer stem cells (CSCs) is of potential applications in the development of effective therapeutic strategies for renal cell carcinoma (RCC). In this study, both the RCC cell line 786-O and surgically removed clear cell RCC (ccRCC) tissues were implemented to grew as spheroids in serum-free medium supplemented with mitogens. This subpopulation possessed key characteristics defining CSCs. We also identified that surgically removed ccRCC tissues were heterogenic and there was a subpopulation of cells that was highly stained with rhodamine-123. Based on membrane-proteomic analyses, CD73 was identified as a candidate biomarker. We further found that CD73high cells were highly tumorigenic. As few as 100 CD73high cells were capable of forming xenograft tumors in non obese diabetic/severe combined immunodeficiency disease mice, whereas 1 × 105 CD73low cells did not initiate tumor formation. During successive culture, the CD73high population regenerated both CD73high and CD73low cells, whereas the CD73low population remained low expression level of CD73. Furthermore, the CD73high cells were more resistant to radiation and DNA-damaging agents than the CD73low cells, and expressed a panel of 'stemness' genes at a higher level than the CD73low cells. These findings suggest that a high level of CD73 expression is a bona fide biomarker of ccRCC stem-like cells. Future research will aim at the elucidation of the underlying mechanisms of CD73 in RCC development and the distinct aspects of ccRCC stem-like cells from other tumor types.


Epithelial-mesenchymal transition in non-targeted lung tissues of Kunming mice exposed to X-rays is suppressed by celecoxib.

  • Wentao Hu‎ et al.
  • Journal of radiation research‎
  • 2018‎

Lung cancer is one of the highest health risks caused by ionizing radiation, which induces both direct effects and non-targeted effects. However, whether radiation-induced non-targeted effects result in epithelial-mesenchymal transition, a critical process during tumorigenesis, in non-targeted lung tissues remains unknown. In the present study, Kunming mice were subjected to whole-body, cranial or local abdominal irradiation of single-dose or fractionated 4 Gy X-rays, and the expressions of epithelial-mesenchymal transition markers in non-targeted lung tissues were assessed by both qRT-PCR and immunofluorescent staining. It was found that the epithelial marker was downregulated while the mesenchymal markers were upregulated significantly in non-targeted lung tissues of the irradiated mice. Local abdominal irradiation was more efficient in inducing epithelial-mesenchymal transition than whole-body or cranial irradiation when the fractionated irradiation method was adopted. In addition, the intraperitoneal administration of celecoxib suppressed epithelial-mesenchymal transition in the non-targeted lung tissues. In conclusion, our findings suggest that epithelial-mesenchymal transition is induced in non-targeted lung tissues, but can be suppressed by inhibition of cyclooxygenase-2 by celecoxib.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: