Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 33 papers

The association between obesity related adipokines and risk of breast cancer: a meta-analysis.

  • Yu Gui‎ et al.
  • Oncotarget‎
  • 2017‎

The risk of breast cancer is significantly increased among obese women as the deleterious adipokines can be over secreted and beneficial adipokines can be hyposecreted. We aim to evaluate the association between obesity-associated adipokines and breast cancer. We searched PubMed, EMBASE, Web of Science, and Chinese Biomedical Literature (CBM) databases for studies reporting association of obesity related adipokines with breast cancer published before Sept. 15, 2015. Initially, 26783 publications were identified, and later, 119 articles were selected for further meta-analysis. Out of these 119 studies, twenty-six studies had reported adipokine levels among obese and non-obese healthy subjects and ninety-three studies had reported adipokine levels among patients with breast cancer. The subjects with BMI >25 kg/m2 had significantly lower adiponectin levels and higher leptin and tumor necrosis factor-α (TNF-α) levels than those with BMI <25 kg/m2. Decreased concentrations of adiponectin, and increased concentrations of leptin, IL-6, IL-8, TNF-α, resistin and visfatin were significantly associated with risk of breast cancer. Adipokine levels were strongly associated with breast cancer among Asian women as compared to non-Asian women. Our results might explain the relationship of obesity, adipokine levels and risk of breast cancer, especially in Asian women.


Opposite roles of myocardin and atrogin-1 in L6 myoblast differentiation.

  • Yulan Jiang‎ et al.
  • Journal of cellular physiology‎
  • 2013‎

L6 rat myoblasts undergo differentiation and myotube formation when cultured in medium containing a low-concentration of serum, but the underlying mechanism is not well understood. The role of atrogin-1, an E3 ligase with well-characterized roles in muscle atrophy, has not been defined in muscle differentiation. Myocardin is a coactivator of serum response factor (SRF), which together promotes smooth muscle differentiation. Myocardin is transiently expressed in skeletal muscle progenitor cells with inhibitory effects on the expression of myogenin and muscle differentiation. It remains unknown whether myocardin, which undergoes ubiquitination degradation, plays a role in L6 cell differentiation. The current study aimed to investigate the potential roles of myocardin and atrogin-1 in differentiation of L6 cells. As reported by many others, shifting to medium containing 2% serum induced myotube formation of L6 cells. Differentiation was accompanied by up-regulation of atrogin-1 and down-regulation of myocardin, suggesting that both may be involved in muscle differentiation. As expected, over-expression of atrogin-1 stimulated the expression of troponin T and myogenin and differentiation of the L6 myoblasts. Co-expression of myocardin with atrogin-1 inhibited atrogin-1-induced myogenin expression. Over-expression of atrogin-1 decreased myocardin protein level, albeit without affecting its mRNA level. Small-interfering RNA-mediated knockdown of atrogin-1 increased myocardin protein. Consistently, ectopic expression of myocardin inhibited myogenic differentiation. Unexpectedly, myocardin decreased the expression of atrogin-1 without involving Foxo1. Taken together, our results have demonstrated that atrogin-1 plays a positive role in skeletal muscle differentiation through down-regulation of myocardin.


CUB Domain-Containing Protein-1 Promotes Proliferation, Migration and Invasion in Cervical Cancer Cells.

  • Lijun Huang‎ et al.
  • Cancer management and research‎
  • 2020‎

Emerging evidence have revealed significant contributions of CUB domain-containing protein-1 (CDCP1) in tumorigenesis, including colon, renal, ovarian, pancreatic, prostate and breast cancers. However, the roles of CDCP1 in cervical cancer (CC) still remain elusive.


Anterior cervical discectomy and fusion versus posterior cervical foraminotomy for the treatment of single-level unilateral cervical radiculopathy: a meta-analysis.

  • Wenguang Fang‎ et al.
  • Journal of orthopaedic surgery and research‎
  • 2020‎

To compare the effectiveness and safety of anterior cervical discectomy and fusion (ACDF) with posterior cervical foraminotomy (PCF) for patients diagnosed with single-level unilateral cervical radiculopathy.


N-acetyldopamine dimer inhibits neuroinflammation through the TLR4/NF-κB and NLRP3/Caspase-1 pathways.

  • Lijun Huang‎ et al.
  • Acta biochimica et biophysica Sinica‎
  • 2022‎

Neuroinflammation mediated by microglia is an important pathophysiological mechanism in neurodegenerative diseases. However, there is a lack of effective drugs to treat neuroinflammation. N-acetyldopamine dimer (NADD) is a natural compound from the traditional Chinese medicine Isaria cicada. In our previous study, we found that NADD can attenuate DSS-induced ulcerative colitis by suppressing the NF-κB and MAPK pathways. Does NADD inhibit neuroinflammation, and what is the target of NADD? To answer this question, lipopolysaccharide (LPS)-stimulated BV-2 microglia was used as a cell model to investigate the effect of NADD on neuroinflammation. Nitric oxide (NO) detection, reactive oxygen species (ROS) detection and enzyme-linked immunosorbent assay (ELISA) results show that NADD attenuates inflammatory signals and proinflammatory cytokines in LPS-stimulated BV-2 microglia, including NO, ROS, tumor necrosis factor (TNF)-α, interleukin (IL)-1β and interleukin-6 (IL-6). Western blot analysis show that NADD inhibits the protein levels of Toll-like receptor 4 (TLR4), nuclear factor kappa-B (NF-κB), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), ASC and cysteinyl aspartate specific proteinase (Caspase)-1, indicating that NADD may inhibit neuroinflammation through the TLR4/NF-κB and NLRP3/Caspase-1 signaling pathways. In addition, surface plasmon resonance assays and molecular docking demonstrate that NADD binds with TLR4 directly. Our study reveals a new role of NADD in inhibiting the TLR4/NF-κB and NLRP3/Caspase-1 pathways, and shows that TLR4-MD2 is the direct target of NADD, which may provide a potential therapeutic candidate for the treatment of neuroinflammation.


Probability of severe postpartum hemorrhage in repeat cesarean deliveries: a multicenter retrospective study in China.

  • Lili Du‎ et al.
  • Scientific reports‎
  • 2021‎

To determine the factors predicting the probability of severe postpartum hemorrhage (SPPH) in women undergoing repeat cesarean delivery (RCD). This multicenter, retrospective cohort study involved women who underwent RCD from January 2017 to December 2017, in 11 public tertiary hospitals within 7 provinces of China. The all-variables model and the multivariable logistic regression model (pre-operative, operative and simple model) were developed to estimate the probability of SPPH in development data and external validated in validation data. Discrimination and calibration were evaluated and clinical impact was determined by decision curve analysis. The study consisted of 11,074 women undergoing RCD. 278 (2.5%) women experienced SPPH. The pre-operative simple model including 9 pre-operative features, the operative simple model including 4 pre-operative and 2 intraoperative features and simple model including only 4 closely related pre-operative features showed AUC 0.888, 0.864 and 0.858 in development data and 0.921, 0.928 and 0.925 in validation data, respectively. Nomograms were developed based on predictive models for SPPH. Predictive tools based on clinical characteristics can be used to estimate the probability of SPPH in patients undergoing RCD and help to allow better preparation and management of these patients by using a multidisciplinary approach of cesarean delivery for obstetrician.


Summary of best evidence for prevention and control of pressure ulcer on support surfaces.

  • Lijun Huang‎ et al.
  • International wound journal‎
  • 2023‎

The aim of this study was to summarise the best evidence for the prevention and control of pressure ulcer at the support surface based on the site and stage of the pressure ulcer in order to reduce the incidence of pressure ulcer and improve the quality of care. In accordance with the top-down principle of the 6 S model of evidence-based resources, evidence from domestic and international databases and websites on the prevention and control of pressure ulcer on support surfaces, including randomised controlled trials, systematic reviews, evidence-based guidelines, and evidence summaries, was systematically searched for the period from January 2000 to July 2022. Evidence grading based on the Joanna Briggs Institute Evidence-Based Health Care Centre Evidence Pre-grading System (2014 version), Australia. The outcomes mainly embraced 12 papers, including three randomised controlled trials, three systematic reviews, three evidence-based guidelines, and three evidence summaries. The best evidence summarised included a total of 19 recommendations in three areas: type of support surface selection assessment, use of support surfaces, and team management and quality control.


Impact of Short-Term (+)-JQ1 Exposure on Mouse Aorta: Unanticipated Inhibition of Smooth Muscle Contractility.

  • Binjie Yan‎ et al.
  • Cells‎
  • 2023‎

(+)-JQ1, a specific chemical inhibitor of bromodomain and extraterminal (BET) family protein 4 (BRD4), has been reported to inhibit smooth muscle cell (SMC) proliferation and mouse neointima formation via BRD4 regulation and modulate endothelial nitric oxide synthase (eNOS) activity. This study aimed to investigate the effects of (+)-JQ1 on smooth muscle contractility and the underlying mechanisms. Using wire myography, we discovered that (+)-JQ1 inhibited contractile responses in mouse aortas with or without functional endothelium, reducing myosin light chain 20 (LC20) phosphorylation and relying on extracellular Ca2+. In mouse aortas lacking functional endothelium, BRD4 knockout did not alter the inhibition of contractile responses by (+)-JQ1. In primary cultured SMCs, (+)-JQ1 inhibited Ca2+ influx. In aortas with intact endothelium, (+)-JQ1 inhibition of contractile responses was reversed by NOS inhibition (L-NAME) or guanylyl cyclase inhibition (ODQ) and by blocking the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway. In cultured human umbilical vein endothelial cells (HUVECs), (+)-JQ1 rapidly activated AKT and eNOS, which was reversed by PI3K or ATK inhibition. Intraperitoneal injection of (+)-JQ1 reduced mouse systolic blood pressure, an effect blocked by co-treatment with L-NAME. Interestingly, (+)-JQ1 inhibition of aortic contractility and its activation of eNOS and AKT were mimicked by the (-)-JQ1 enantiomer, which is structurally incapable of inhibiting BET bromodomains. In summary, our data suggest that (+)-JQ1 directly inhibits smooth muscle contractility and indirectly activates the PI3K/AKT/eNOS cascade in endothelial cells; however, these effects appear unrelated to BET inhibition. We conclude that (+)-JQ1 exhibits an off-target effect on vascular contractility.


The α-tubulin of Laodelphax striatellus mediates the passage of rice stripe virus (RSV) and enhances horizontal transmission.

  • Yao Li‎ et al.
  • PLoS pathogens‎
  • 2020‎

Rice stripe virus (RSV, genus Tenuivirus, family Phenuiviridae) is the causal agent of rice stripe disease transmitted by the small brown planthopper (SBPH, Laodelphax striatellus) in a persistent propagative manner. The midgut and salivary glands of SBPH are the first and last barriers to the viral circulation and transmission processes, respectively; however, the precise mechanisms used by RSV to cross these organs and transmit to rice plants have not been fully elucidated. We obtained the full-length cDNA sequence of L. striatellus α-tubulin 2 (LsTUB) and found that RSV infection increased the level of LsTUB in vivo. Furthermore, LsTUB was shown to co-localize with RSV nonstructural protein 3 (NS3) in vivo and bound NS3 at positions 74-76 and 80-82 in vitro. Transient gene silencing of LsTUB expression caused a significant reduction in detectable RSV loads and viral NS3 expression levels, but had no effect on NS3 silencing suppressor activity and viral replication in insect cells. However, suppression of LsTUB attenuated viral spread in the bodies of SBPHs and decreased RSV transmission rates to rice plants. Electrical penetration graphs (EPG) showed that LsTUB knockdown by RNAi did not impact SBPH feeding; therefore, the reduction in RSV transmission rates was likely caused by a decrease in viral loads inside the planthopper. These findings suggest that LsTUB mediates the passage of RSV through midgut and salivary glands and leads to successful horizontal transmission.


Voltage-dependent anion channel 2 (VDAC2) facilitates the accumulation of rice stripe virus in the vector Laodelphax striatellus.

  • Lu Zhang‎ et al.
  • Virus research‎
  • 2023‎

Rice stripe virus (RSV) causes enormous losses in rice production and is transmitted by the small brown planthopper, Laodelphax striatellus, in a persistent-propagative manner. RSV accumulation within the gut lumen of the vector is indispensable for the successful transmission to rice and insects. In this study, we obtained a 1464 bp full-length cDNA of a voltage-dependent anion channel 2 from L. striatellus (LsVDAC2), which encodes a 283 amino acid protein. RSV infection increased the expression of LsVDAC2 in the midguts and ovaries of L. striatellus by 260% and 228%, respectively. Silencing of LsVDAC2 resulted in a 88% reduction of RSV loads at 24 h after RNAi, indicating that LsVDAC2 facilitates RSV accumulation in the vector. Yeast two-hybrid and GST pulldown assays demonstrated that LsVDAC2 interacted with RSV RNA-dependent RNA polymerase, RdRp. Furthermore, experiments in vivo and in vitro showed that LsVDAC2 induced the apoptotic response in RSV-infected insects and tissues. Silencing of LsVDAC2 via RNAi significantly reduced the expression of genes for apoptosis-related caspases 1a and 1c by 62% and 78%, respectively, in RSV-infected vectors. Whether LsVDAC2-induced RSV accumulation is related to RSV RdRp and LsVDAC2-induced cell apoptosis deserves further investigation.


The effects of knockdown of rho-associated kinase 1 and zipper-interacting protein kinase on gene expression and function in cultured human arterial smooth muscle cells.

  • Jing-Ti Deng‎ et al.
  • PloS one‎
  • 2015‎

Rho-associated kinase (ROCK) and zipper-interacting protein kinase (ZIPK) have been implicated in diverse physiological functions. ROCK1 phosphorylates and activates ZIPK suggesting that at least some of these physiological functions may require both enzymes. To test the hypothesis that sequential activation of ROCK1 and ZIPK is commonly involved in regulatory pathways, we utilized siRNA to knock down ROCK1 and ZIPK in cultured human arterial smooth muscle cells (SMC). Microarray analysis using a whole-transcript expression chip identified changes in gene expression induced by ROCK1 and ZIPK knockdown. ROCK1 knockdown affected the expression of 553 genes, while ZIPK knockdown affected the expression of 390 genes. A high incidence of regulation of transcription regulator genes was observed in both knockdowns. Other affected groups included transporters, kinases, peptidases, transmembrane and G protein-coupled receptors, growth factors, phosphatases and ion channels. Only 76 differentially expressed genes were common to ROCK1 and ZIPK knockdown. Ingenuity Pathway Analysis identified five pathways shared between the two knockdowns. We focused on cytokine signaling pathways since ROCK1 knockdown up-regulated 5 and down-regulated 4 cytokine genes, in contrast to ZIPK knockdown, which affected the expression of only two cytokine genes (both down-regulated). IL-6 gene expression and secretion of IL-6 protein were up-regulated by ROCK1 knockdown, whereas ZIPK knockdown reduced IL-6 mRNA expression and IL-6 protein secretion and increased ROCK1 protein expression, suggesting that ROCK1 may inhibit IL-6 secretion. IL-1β mRNA and protein levels were increased in response to ROCK1 knockdown. Differences in the effects of ROCK1 and ZIPK knockdown on cell cycle regulatory genes suggested that ROCK1 and ZIPK regulate the cell cycle by different mechanisms. ROCK1, but not ZIPK knockdown reduced the viability and inhibited proliferation of vascular SMC. We conclude that ROCK1 and ZIPK have diverse, but predominantly distinct regulatory functions in vascular SMC and that ROCK1-mediated activation of ZIPK is not involved in most of these functions.


Prognostic value of LRRC4C in Colon and Gastric Cancers correlates with Tumour Microenvironment Immunity.

  • XiaoFeng Yang‎ et al.
  • International journal of biological sciences‎
  • 2021‎

In this study, we aimed to use ESTIMATE and CIBERSORT computational methods to analyse transcriptional information on COAD and STAD in TCGA. We downloaded transcriptome RNA-seq data of 446 patients with colon cancer from TCGA and estimated the amount of immune and stromal components in the COAD samples using CIBERSORT algorithms. We analysed differentially expressed genes in 446 TCGA samples and 585 Series GSE39582 samples, in high- and low-scoring groups, using Cox regression. The expression of LRRC4C, correlated positively with clinicopathological characteristics and negatively with the survival of patients with COAD. Single-gene survival analysis using Gene Expression Profiling Interactive Analysis 2.0 and Kaplan-Meier plotter revealed an association between high levels of LRRC4C expression and poor prognosis in patients with colon and gastric cancers. Gene set enrichment analysis of COAD and STAD samples indicated that genes in groups expressing high and low LRRC4C levels were mainly enriched in immune-related activities and metabolic pathways, respectively. Difference and correlation analyses of the relationship between LRRC4C expression and tumour-infiltrating immune cells, determined using CIBERSORT algorithms, revealed that monocytes, resting mast cells, and M2 macrophages were positively correlated with LRRC4C expression.


Taohong Siwu Decoction exerts anticancer effects on breast cancer via regulating MYC, BIRC5, EGF and PIK3R1 revealed by HTS2 technology.

  • Yu Gui‎ et al.
  • Computational and structural biotechnology journal‎
  • 2022‎

Taohong Siwu Decoction (TSD), a classical gynecological prescription that was firstly reported 600 years ago, has been widely used in the adjuvant treatment of breast cancer (BRCA) in China. However, the mechanism of action of TSD in treating BRCA has remained unclear. Here, high-throughput sequencing-based high-throughput screening (HTS2) technology was used to reveal the molecular mechanism of TSD, combination with bioinformatics and systems pharmacology in this study. Firstly, our results showed that TSD exerts an anticancer effect on BRCA cells by inhibiting cell proliferation, migration and inducing apoptosis as well as cell-cycle arrest. And our results from HTS2 suggested that herbs of TSD could significantly inhibit KRAS pathway and pathway in cancer, and activate apoptosis pathway, p53 pathway and hypoxia pathway, which may lead to the anticancer function of TSD. Further, we found that TSD clearly regulates MYC, BIRC5, EGF, and PIK3R1 genes, which play an important role in the development and progression of tumor and have significant correlation with overall survival in BRCA patients. By molecular docking, we discovered that Pentagalloylglucose, a compound derived from TSD, might directly bind to and inhibit the function of BRD4, which is a reported transcriptional activator of MYC gene, and thus repress the expression of MYC. Taken together, this study explores the mechanism of TSD in anti-BRCA by combining HTS2 technology, bioinformatics analysis and systems pharmacology.


Risk Factors for Poor Outcomes Following Minimally Invasive Discectomy: A Post Hoc Subgroup Analysis of 2-Year Follow-up Prospective Data.

  • Zihao Chen‎ et al.
  • Neurospine‎
  • 2022‎

A post hoc subgroup analysis of prospectively collected data from a randomized controlled trial was conducted to identify risk factors related to poor outcomes in patients who underwent minimally invasive discectomy.


Prognostic value of pretreatment plasma fibrinogen in patients with colorectal cancer: A systematic review and meta-analysis.

  • Menglei Li‎ et al.
  • Medicine‎
  • 2019‎

Growing evidence showed that high pretreatment plasma fibrinogen could be used as a potential prognostic marker in colorectal cancer (CRC). However, the conclusions were controversial. Therefore, this meta-analysis was conducted to evaluate the prognostic value of pretreatment plasma fibrinogen in patients with CRC.


Maternal age at first cesarean delivery related to adverse pregnancy outcomes in a second cesarean delivery: a multicenter, historical, cross-sectional cohort study.

  • Shilei Bi‎ et al.
  • BMC pregnancy and childbirth‎
  • 2021‎

To determine the effects of maternal age at first cesarean on maternal complications and adverse outcomes of pregnancy with the second cesarean.


Supplement of Lipid Emulsion to Epinephrine Improves Resuscitation Outcomes of Asphyxia-Induced Cardiac Arrest in Aged Rats.

  • Lijun Huang‎ et al.
  • Clinical interventions in aging‎
  • 2020‎

The goal of the study was to investigate the efficacy of lipid supplement to epinephrine-based therapy in resuscitation of asphyxia-induced cardiac arrest in aged rats.


Generating Functional Multicellular Organoids from Human Placenta Villi.

  • Lijun Huang‎ et al.
  • Advanced science (Weinheim, Baden-Wurttemberg, Germany)‎
  • 2023‎

The interaction between trophoblasts, stroma cells, and immune cells at the maternal-fetal interface constitutes the functional units of the placenta, which is crucial for successful pregnancy outcomes. However, the investigation of this intricate interplay is restricted due to the absence of efficient experimental models. To address this challenge, a robust, reliable methodology for generating placenta villi organoids (PVOs) from early, late, or diseased pregnancies using air-liquid surface culture is developed. PVOs contain cytotrophoblasts that can self-renew and differentiate directly, along with stromal elements that retain native immune cells. Analysis of scRNA sequencing and WES data reveals that PVOs faithfully recapitulate the cellular components and genetic alterations of the corresponding source tissue. Additionally, PVOs derived from patients with preeclampsia exhibit specific pathological features such as inflammation, antiangiogenic imbalance, and decreased syncytin expression. The PVO-based propagation of primary placenta villi should enable a deeper investigation of placenta development and exploration of the underlying pathogenesis and therapeutics of placenta-originated diseases.


Lineage tracing of mutant granulosa cells reveals in vivo protective mechanisms that prevent granulosa cell tumorigenesis.

  • Shudong Niu‎ et al.
  • Cell death and differentiation‎
  • 2023‎

Ovarian granulosa cell tumors (GCTs) originate from granulosa cells (GCs) and represent the most common sex cord-stromal tumor in humans. However, the developmental regulations and molecular mechanisms underlying their etiology are largely unknown. In the current study, we combined a multi-fluorescent reporter mouse model with a conditional knockout mouse model, in which the tumor suppressor genes Pten and p27 were deleted in GCs, to perform cell lineage tracing of mutant GCs. We found that only 30% of ovaries with substantial mutant GCs developed into GCTs that derived from a single mutant GC. In-depth molecular analysis of the process of tumorigenesis demonstrated that up-regulation of immune evasion genes Cd24a and Cd47 led, in part, to the transition of mutant GCs to GCTs. Therefore, treatment with the Cd47 inhibitor RRX-001 was tested and found to efficiently suppress the growth of GCTs in vivo. Together, our study has revealed an immune evasion mechanism via CD24/CD47 upregulation to GCT formation, shedding light on the future potential clinical therapies for GCTs.


JAZF1 safeguards human endometrial stromal cells survival and decidualization by repressing the transcription of G0S2.

  • Yingyu Liang‎ et al.
  • Communications biology‎
  • 2023‎

Decidualization of human endometrial stromal cells (hESCs) is essential for the maintenance of pregnancy, which depends on the fine-tuned regulation of hESCs survival, and its perturbation contributes to pregnancy loss. However, the underlying mechanisms responsible for functional deficits in decidua from recurrent spontaneous abortion (RSA) patients have not been elucidated. Here, we observed that JAZF1 was significantly downregulated in stromal cells from RSA decidua. JAZF1 depletion in hESCs resulted in defective decidualization and cell death through apoptosis. Further experiments uncovered G0S2 as a important driver of hESCs apoptosis and decidualization, whose transcription was repressed by JAZF1 via interaction with G0S2 activator Purβ. Moreover, the pattern of low JAZF1, high G0S2 and excessive apoptosis in decidua were consistently observed in RSA patients. Collectively, our findings demonstrate that JAZF1 governs hESCs survival and decidualization by repressing G0S2 transcription via restricting the activity of Purβ, and highlight the clinical implications of these mechanisms in the pathology of RSA.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: