Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

Suppressing circ_0008494 inhibits HSCs activation by regulating the miR-185-3p/Col1a1 axis.

  • Binbin Li‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Background: Hepatic fibrosis (HF) is characterized by activation of hepatic stellate cells (HSCs) and extensive deposition of extracellular matrix components, especially collagens. However, effective antifibrotic therapies are still lacking. Recently, circular RNAs (circRNAs) have been identified as novel regulators of HF. Methods: circRNAs profile was screened by RNA sequencing and the location of circ_0008494 was confirmed by fluorescence in situ hybridization assay in human HF tissues. Bioinformatics analysis was used for result prediction and dual-luciferase reporter, together with AGO-RIP and biotin-coupled miRNA capture assays, were used to determine miR-185-3p/collagen type I alpha 1 chain (Col1a1) as the target of circ_0008494. A stable circ_0008494-interfering human HSCs cell line was constructed and used to determine the regulatory mechanism of circ_0008494/miR-185-3p/Col1a1 axis. Results: circ_0008494 was abundantly and significantly over-expressed in human HF tissues and located at the cytoplasm of HSCs. Together, dual-luciferase reporter, AGO-RIP and biotin-coupled miRNA capture assays confirmed that circ_0008494 acted as a sponge of miR-185-3p. Cell functional experiments and rescue assays demonstrated suppressing circ_0008494 could inhibit activation, proliferation, migration of HSCs and promote their apoptosis through miR-185-3p. In particular, the HF indicator, Col1a1, was validated as the direct target of miR-185-3p and the suppression of circ_0008494 inhibited the expression of Col1a1 by releasing miR-185-3p. Conclusion: Knocking down circ_0008494 inhibited HSCs activation through the miR-185-3p/Col1a1 axis. circ_0008494 could be a promising treatment target for HF.


Complete genome characterization of a novel enterovirus type EV-B106 isolated in China, 2012.

  • Jingjing Tang‎ et al.
  • Scientific reports‎
  • 2014‎

Human enterovirus B106 (EV-B106) is a recently identified member of enterovirus species B. In this study, we report the complete genomic characterization of an EV-B106 strain (148/YN/CHN/12) isolated from an acute flaccid paralysis patient in Yunnan Province, China. The new strain had 79.2-81.3% nucleotide and 89.1-94.8% amino acid similarity in the VP1 region with the other two EV-B106 strains from Bolivia and Pakistan. When compared with other EV serotypes, it had the highest (73.3%) VP1 nucleotide similarity with the EV-B77 prototype strain CF496-99. However, when aligned with all EV-B106 and EV-B77 sequences available from the GenBank database, two major frame shifts were observed in the VP1 coding region, which resulted in substantial (20.5%) VP1 amino acid divergence between the two serotypes. Phylogenetic analysis and similarity plot analysis revealed multiple recombination events in the genome of this strain. This is the first report of the complete genome of EV-B106.


A yes-associated protein 1- Notch1 receptor positive feedback loop promotes breast cancer lung metastasis by attenuating the bone morphogenetic protein 4-SMAD family member 1/5 signaling.

  • Lin Zhao‎ et al.
  • Carcinogenesis‎
  • 2022‎

The Notch1 (Notch1 receptor) and yes-associated protein 1 (YAP1) signaling can regulate breast cancer metastasis. This study aimed at investigating whether and how these two signal pathways crosstalk to promote breast cancer lung metastasis. Here, we show that YAP1 expression was positively correlated with Notch1 in breast cancer according to bioinformatics and experimental validation. Mechanistically, YAP1 with TEA domain transcription factors (TEADs) enhanced Jagged1(JAG1)-Notch1 signaling. Meanwhile, Notch1 promoted YAP1 stability in breast cancer cells by inhibiting the β-TrCP-mediated degradation, thereby, forming a YAP1- JAG1/Notch1 positive feedback loop in breast cancer. Furthermore, YAP1 enhanced the mammosphere formation and stemness of MDA-MB-231 cells by attenuating the inhibition of the BMP4-SMAD1/5 signaling. In vivo, the YAP1- JAG1/Notch1 positive feedback loop promoted the lung colonization of MDA-MB-231 cells. Our data for the first time indicate that the YAP1-Notch1 positive feedback loop promotes lung metastasis of breast cancer by modulating self-renewal and inhibiting the BMP4-SMAD1/5 signaling.


The droplet breakup model and characteristics of pH-shifted peanut protein isolate-high methoxyl pectin stabilised emulsions under ultrasound.

  • Lifen Zhang‎ et al.
  • Ultrasonics sonochemistry‎
  • 2023‎

The effect of pH on the occurrence states of peanut protein isolate (PPI) and high methoxyl pectin (HMP), and droplet breakup model of the emulsions under ultrasound were studied. Particle size distribution and scanning electron microscopy results showed that PPI-HMP existed a soluble complex at pH 5.0, had no interaction at pH 7.0, and was co-soluble at pH 9.0. Droplet breakup model results revealed that the characteristics of emulsion stabilised by PPI-HMP treated at pH 5.0 was different from that at pH 7.0 and 9.0. The average diameter of the droplet well satisfied the model. According to rheological properties, interface tension, and microstructure, the formation mechanism and characteristics of emulsion stabilised by PPI-HMP treated at pH 5.0 was different from that at pH 7.0 and pH 9.0. The research provided a reference for constructing emulsions using pH-shifted PPI-HMP under ultrasound.


OTUD5-mediated deubiquitination of YAP in macrophage promotes M2 phenotype polarization and favors triple-negative breast cancer progression.

  • Yujiao Zhang‎ et al.
  • Cancer letters‎
  • 2021‎

Macrophages, which are highly plastic, can be polarized to M1 or M2 subtypes according to the diverse signals in complex microenvironment. Studies have shown the activation of YAP, an oncogenic transcriptional co-activator, increased macrophage recruitment. However, its role in macrophage polarization remains to be elucidated, especially in triple-negative breast cancer (TNBC) progression. Here we found TNBC cells increased YAP expression in macrophages, which depended on OTUD5-mediated deubiquitination and stabilization of YAP, then the high expression of YAP polarized macrophage to the M2-like phenotype. Moreover, the elevation of YAP in M2-like macrophage promotes the pro-metastatic potential of TNBC cells via MCP-1/CCR2 pathway. We also observed high expression of YAP in M2 macrophage was negatively related to survival. Collectively, our finding suggested the therapeutic strategy that targets YAP+ M2 macrophage could be a novel option for TNBC treatment.


Correlationship between self-assembly behavior and emulsion stabilization of pea protein-high methoxyl pectin complexes treated with ultrasound at pH 2.0.

  • Kaiyuan Ma‎ et al.
  • Ultrasonics sonochemistry‎
  • 2023‎

This study investigated the effects of ultrasound on the self-assembly behavior of pea protein (PP)-high methoxyl pectin (HMP) complexes at pH 2.0 through transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and intrinsic fluorescence analysis. The emulsion stabilization mechanism of PP-HMP treated with ultrasound (PP-HMP-US) was also elucidated. The results indicated that ultrasound increased the emulsifying activity index (EAI) and emulsifying stability index (ESI) of PP-HMP. Moreover, PP-HMP-US-based emulsions formed small, dispersed oil drops, which were stable during storage. PP-HMP- and PP-HMP-US-based emulsions did not demonstrate any creaming. The TEM results revealed that ultrasound can regulate the self-assembly behavior of PP and HMP to form spherical particles with a core-shell structure. This structure possessed low turbidity, a small particle size, and high absolute zeta potential values. The FTIR and intrinsic fluorescence spectra demonstrated that ultrasound increased the α-helix and β-sheet contents and exposed the tryptophan groups to more hydrophilic environments. Ultrasound also promoted the PP-HMP self-assembly through electrostatic interaction and improved its oil-water interfacial behavior, as indicated by the EAI and ESI values of PP-HMP-US-based emulsions. The current results provide a reference for the development of an innovative emulsifier prepared by ultrasound-treated protein-pectin complexes at low pH.


Cocaine inhibition of nicotinic acetylcholine receptors influences dopamine release.

  • Alexandra Acevedo-Rodriguez‎ et al.
  • Frontiers in synaptic neuroscience‎
  • 2014‎

Nicotinic acetylcholine receptors (nAChRs) potently regulate dopamine (DA) release in the striatum and alter cocaine's ability to reinforce behaviors. Since cocaine is a weak nAChR inhibitor, we hypothesized that cocaine may alter DA release by inhibiting the nAChRs in DA terminals in the striatum and thus contribute to cocaine's reinforcing properties primarily associated with the inhibition of DA transporters. We found that biologically relevant concentrations of cocaine can mildly inhibit nAChR-mediated currents in midbrain DA neurons and consequently alter DA release in the dorsal and ventral striatum. At very high concentrations, cocaine also inhibits voltage-gated Na channels in DA neurons. Furthermore, our results show that partial inhibition of nAChRs by cocaine reduces evoked DA release. This diminution of DA release via nAChR inhibition more strongly influences release evoked at low or tonic stimulation frequencies than at higher (phasic) stimulation frequencies, particularly in the dorsolateral striatum. This cocaine-induced shift favoring phasic DA release may contribute to the enhanced saliency and motivational value of cocaine-associated memories and behaviors.


Molecular epidemiology and recombination of human enteroviruses from AFP surveillance in Yunnan, China from 2006 to 2010.

  • Jingjing Tang‎ et al.
  • Scientific reports‎
  • 2014‎

The study represents the genetic overview of non-polio enteroviruses (NPEV) isolated from acute flaccid paralysis (AFP) cases in Yunnan Province from 2006 to 2010. Molecular typing based on VP1 nucleotide sequence was carried out on 98 NPEV isolates, and 33 serotypes were identified. EV-B was detected most frequently with an overall prevalence of 71.4%, followed by EV-A (18.4%) and EV-C (10.2%). No EV-D was identified. NPEV positive rate was higher in children <3 years of age and in summer and autumn months. Clinically, 68.4% patients presented with fever, and 16 cases (16.3%) were classified as Guillain-Barré syndrome, followed by myositis (13.3%). The phylogenetic analysis on the VP1 and 3D regions of prevalent serotypes provided evidence for recombination events among them. EV-A71, an important pathogen previously demonstrated to be associated with paralysis, had also been detected (n = 8) in this study and they all belonged to genotype C4. Great genetic divergence between Yunnan isolates and strains from other regions of the world was revealed. The findings of the study are of great importance for further research on molecular evolution of EV under the circumstance of no specialized EV surveillance system in China.


MiR-34c promotes hepatic stellate cell activation and Liver Fibrogenesis by suppressing ACSL1 expression.

  • Binbin Li‎ et al.
  • International journal of medical sciences‎
  • 2021‎

Normally, there are multiple microRNAs involved in the pathogenesis of liver fibrosis. In our work, we aimed at identifying the role of miR-34c in the hepatic stellate cell (HSC) activation and liver fibrosis and its potential mechanism. Our results have shown that during natural activation of HSC, the level of miR-34c was increased significantly whereas acyl-CoA synthetase long-chain family member-1(ACSL1), which is a key enzyme can affect fatty acid(FA) synthesis, was decreased. A double fluorescence reporter assay further confirmed that ACSL1 is a direct target gene of miR-34c. Moreover, the inhibition of miR-34C can attenuate the synthesis of collagen in HSC-T6. In our rescue assay, ACSL1 expression was 1.49-fold higher compared to normal control cells which were transfected with the miR-34c inhibitor in a stable low expression ACSL1 cell line. While at the same time, α-SMA and Col1α expression decreased by 18.22% and 2.58%, respectively. Moreover, we performed an in vivo model using dimethylnitrosamine (DMN) in conjunction with the miR-34c agomir, combined with the treatment of DMN and the miR-34c agomir can increase liver fibrosis. Meanwhile, the degree of hepatic fibrosis was increased and lipid droplets reduced dramatically in rats and HSC-T6 cell treated with miR-34c mimics alone compared to untreated groups. Our results indicate that miR-34c plays an essential role in liver fibrosis by targeting ACSL1 closely associated with lipid droplets, and it might be used as a potential therapeutic target.


14-3-3 Binding to ataxin-1(ATXN1) regulates its dephosphorylation at Ser-776 and transport to the nucleus.

  • Shaojuan Lai‎ et al.
  • The Journal of biological chemistry‎
  • 2011‎

Spinocerebellar ataxia type 1 (SCA1) is a lethal neurodegenerative disorder caused by expansion of a polyglutamine tract in ATXN1. A prominent site of pathology in SCA1 is cerebellar Purkinje neurons where mutant ATXN1 must enter the nucleus to cause disease. In SCA1, phosphorylation of ATXN1 at Ser-776 modulates disease. Interestingly, Ser-776 is located within a region of ATXN1 that harbors several functional motifs including binding sites for 14-3-3, and splicing factors RBM17 and U2AF65. The interaction of ATXN1 with these proteins is thought to be regulated by the phosphorylation status of Ser-776. In addition, Ser-776 is adjacent to the NLS in ATXN1. Although pS776-ATXN1 is enriched in nuclear extracts of cerebellar cells, the vast majority of 14-3-3 is in the cytoplasmic fraction. We found that dephosphorylation of cytoplasmic pS776-ATXN1 is blocked by virtue of it being in a complex with 14-3-3. In addition, data suggest that binding of 14-3-3 to cytoplasmic ATXN1 impeded its transport to the nucleus, suggesting that 14-3-3 must disassociate from ATXN1 for transport of ATXN1 to the nucleus. Consistent with this hypothesis is the observation that once in the nucleus pS776 is able to be dephosphorylated. Evidence is presented that PP2A is the pS776-ATXN1 phosphatase in the mammalian cerebellum. In the nucleus, we propose that dephosphorylation of pS776-ATXN1 by PP2A regulates the interaction of ATXN1 with the splicing factors RBM17 and U2AF65.


BRD4 inhibition suppresses PD-L1 expression in triple-negative breast cancer.

  • Xin Jing‎ et al.
  • Experimental cell research‎
  • 2020‎

Programmed death-ligand 1 (PD-L1) expression on the surface of tumour cells can cause tumour immune evasion. Benefits of combining anti-PD-L1 therapy with nab-paclitaxel in patients with advanced triple-negative breast cancer (TNBC) have been reported. However, some patients cannot tolerate the immune-related adverse effects (irAEs) caused by antibody-based immunotherapy. BRD4 is a member of the bromodomain and extra-terminal domain (BET) family. BRD4 inhibition has shown antitumour effects in many tumours, but its role in TNBC has not been definitively concluded. In particular, the immune regulation of BRD4 in TNBC has been rarely studied. In this study, we used JQ1, a BET inhibitor, and small interfering RNAs (siRNAs) targeting BRD4 to explore the influence of BRD4 on PD-L1 expression in TNBC. The results indicated that BRD4 inhibition suppressed PD-L1 expression and the PD-L1 upregulation induced by interferon-γ (IFN-γ). In the in vivo experiments, we found that JQ1 not only reduced the PD-L1 expression level but also changed the proportions of T lymphocyte subsets in the spleens of tumour-bearing mice, which helped to relieve immunosuppression. Briefly, our study reveals that BRD4 regulates PD-L1 expression and may provide a potential method for blocking the programmed death 1 (PD-1)/PD-L1 immune checkpoint in TNBC.


Dual-degradable disulfide-containing PEI-Pluronic/DNA polyplexes: transfection efficiency and balancing protection and DNA release.

  • Lifen Zhang‎ et al.
  • International journal of nanomedicine‎
  • 2013‎

Polymeric gene-delivery vectors to achieve lack of toxicity and a balance between protection and DNA release remains a formidable challenge. Incorporating intracellular environment-responsive degradable bonds is an appreciable step toward developing safer transfection agents. In this study, novel, dual-degradable polycation copolymers (Pluronic-diacrylate [PA]-polyethyleneimine [PEI]-SS) were synthesized through the addition of low molecular weight (800 Da) PEI cross-linked with SS (PEI-SS) to PA. Three PA-PEI-SS copolymers (PA-PEI-SS1, 2, and 3) with different PEI-SS to Pluronic molar ratios were investigated and found to strongly condense plasmid DNA into positively charged nanoparticles with an average particle size of approximately 200 nm and to possess higher stability against DNase I digestion and sodium heparin. Disulfide and ester bonds of the copolymers were susceptible to intracellular redox conditions. In vitro experiments demonstrated that the PA-PEI-SS copolymers had significantly lower cytotoxicity and higher transfection efficiency in both BGC-823 and 293T cell lines than the controls of degradable PEI-SS and nondegradable 25 kDa PEI. Transfection activity was influenced by the PEI-SS content in the polymers and PA-PEI-SS1 showed the highest efficiency of the three copolymers. These studies suggest that these dual-degradable copolymers could be used as potential biocompatible gene delivery carriers.


Intracellular redox-responsive nanocarrier for plasmid delivery: in vitro characterization and in vivo studies in mice.

  • Lifen Zhang‎ et al.
  • International journal of nanomedicine‎
  • 2016‎

Although some modifications of polyethyleneimine (PEI) properties have been explored to balance the transfection efficiency and cytotoxicity, its successful plasmid delivery in vitro and in vivo to realize its true therapeutic potentials remains a major challenge, mainly due to intracellular trafficking barriers. Herein, we present a delivery nanocarrier Pluronic-PEI-SS by conjugating reducible disulfide-linked PEI (PEI-SS) to biocompatible Pluronic for enhanced DNA delivery and transfection efficiency in vitro and in vivo. Pluronic-PEI-SS strongly condensed plasmid DNA to low positively charged nanocomplexes, exhibited good stability against deoxyribonuclease I digestion, and tended to be easily degraded in the presence of reducing agent 1,4-dithiothreitol. The in vitro transfection of the complex Pluronic-PEI-SS/DNA into HeLa and 293T cells resulted in lower cytotoxicity as well as significantly higher cellular uptake, nucleus transfection, and gene expression than Pluronic-PEI (25 kDa), PEI-SS, and PEI 25 kDa given alone. Furthermore, the in vivo transfection study demonstrated that Pluronic-PEI-SS/DNA complexes induced a higher enrichment than the commercial PEI/DNA complex in the tumor, indicating their potential application as biocompatible vector in gene delivery.


Constitutive Expression of miR408 Improves Biomass and Seed Yield in Arabidopsis.

  • Zhaoqing Song‎ et al.
  • Frontiers in plant science‎
  • 2017‎

miR408 is highly conserved among different plant species and targets transcripts encoding copper-binding proteins. The function of miR408 in reproductive development remains largely unclear despite it being known to play important roles during vegetative development in Arabidopsis. Here, we show that transgenic Arabidopsis plants overexpressing MIR408 have altered morphology including significantly increased leaf area, petiole length, plant height, flower size, and silique length, resulting in enhanced biomass and seed yield. The increase in plant size was primarily due to cell expansion rather than cell proliferation, and was consistent with higher levels of myosin gene expression and gibberellic acid (GA) measured in transgenic plants. In addition, photosynthetic rate was significantly increased in the MIR408-overexpressing plants, as manifested by higher levels of chloroplastic copper content and plastocyanin (PC) expression. In contrast, overexpression of miR408-regulated targets, Plantacyanin and Laccase 13, resulted in reduced biomass production and seed yield. RNA-sequencing revealed that genes involved in primary metabolism and stress response were preferentially enriched in the genes upregulated in MIR408-overexpressing plants. These results indicate that miR408 plays an important role in regulating biomass and seed yield and that MIR408 may be a potential candidate gene involved in the domestication of agricultural crops.


Liquiritigenin alleviates doxorubicin-induced chronic heart failure via promoting ARHGAP18 and suppressing RhoA/ROCK1 pathway.

  • Zhibing Xu‎ et al.
  • Experimental cell research‎
  • 2022‎

Chronic heart failure (CHF) is one of the most common chronic diseases with increasing incidence and mortality. Liquiritigenin (LQG) is shown to protect mice from cardiotoxicity. However, its underlying mechanism remains unclear. Our study aimed to reveal the role of ARHGAP18 in LQG-mediated cardioprotective effects in CHF. In the current study, CHF cell model and rat model were established by the application of doxorubicin (DOX). The reactive oxygen species (ROS) level and cell apoptosis were determined by flow cytometry. The cardiac function of rats was evaluated by measuring left ventricular systolic pressure, left ventricular end diastolic pressure, and serum level of lactate dehydrogenase and brain natriuretic peptide. The expression of active RhoA was elevated and that of ARHGAP18 was decreased in DOX-induced CHF cell model. ARHGAP18 could reduce DOX-induced RhoA activation, ROS elevation, and cell apoptosis. Meanwhile, the knockdown of ARHGAP18 could promote the activation of RhoA, the level of ROS, and the rate of cell apoptosis, which could be reversed by the application of RhoA inhibitor. LQG promoted the expression of ARHGAP18 and exerted similar effects of ARHGAP18 in CHF cell model. The application of LQG could also reverse the effects mediated by ARHGAP18 knockdown. Moreover, LQG significantly improved cardiac function and ameliorated DOX-induced cardiotoxicity of CHF rats. In conclusion, LQG could alleviate DOX-induced CHF via promoting ARHGAP18 and suppressing RhoA/ROCK1 pathway. LQG was a potential agent for CHF treatment.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: