Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 154 papers

FAT4 functions as a tumour suppressor in gastric cancer by modulating Wnt/β-catenin signalling.

  • Jian Cai‎ et al.
  • British journal of cancer‎
  • 2015‎

FAT4, a cadherin-related protein, was shown to function as a tumour suppressor; however, its role in human gastric cancer remains largely unknown. Here, we investigated the role of FAT4 in gastric cancer and examined the underlying molecular mechanisms.


Upregulation of NETO2 expression correlates with tumor progression and poor prognosis in colorectal carcinoma.

  • Liang Hu‎ et al.
  • BMC cancer‎
  • 2015‎

Neuropilin and tolloid-like 2 (NETO2) has been found to be overexpressed in different human cancers, but its expression pattern and clinical relevance in colorectal carcinoma (CRC) remains unknown.


ERK Signaling Pathway Is Involved in HPV-16 E6 but not E7 Oncoprotein-Induced HIF-1α Protein Accumulation in NSCLC Cells.

  • Fei Liu‎ et al.
  • Oncology research‎
  • 2016‎

Extracellular signal-regulated kinase (ERK)1/2 signaling pathway plays a critical role in regulating tumor angiogenesis. Our previous studies have demonstrated that HPV-16 oncoproteins enhanced hypoxia-inducible factor-1α (HIF-1α) protein accumulation and vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8) expression in non-small cell lung cancer (NSCLC) cells, thus contributing to angiogenesis. In this study, we further investigated the role of ERK1/2 signaling pathway in HPV-16 oncoprotein-induced HIF-1α, VEGF, and IL-8 expression and in vitro angiogenesis in NSCLC cells. Our results showed that HPV-16 E6 and HPV-16 E7 oncoproteins promoted the activation of ERK1/2 signaling pathway in A549 and NCI-H460 cells. Moreover, PD98059, a specific inhibitor of ERK1/2, blocked in vitro angiogenesis stimulated by HPV-16 E6 but not E7 oncoprotein. Additionally, HIF-1α protein accumulation and VEGF and IL-8 expression in NSCLC cells induced by HPV-16 E6 but not E7 oncoprotein were significantly inhibited by PD98059. Taken together, our results suggest that ERK1/2 signaling pathway is involved in HPV-16 E6 but not E7 oncoprotein-induced HIF-1α, VEGF, and IL-8 expression in NSCLC cells, leading to the enhanced angiogenesis in vitro.


Dietary Nucleotides Supplementation Improves the Intestinal Development and Immune Function of Neonates with Intra-Uterine Growth Restriction in a Pig Model.

  • Lianqiang Che‎ et al.
  • PloS one‎
  • 2016‎

The current study aimed to determine whether dietary nucleotides supplementation could improve growth performance, intestinal development and immune function of intra-uterine growth restricted (IUGR) neonate using pig as animal model. A total of 14 pairs of normal birth weight (NBW) and IUGR piglets (7 days old) were randomly assigned to receive a milk-based control diet (CON diet) or diet supplemented with nucleotides (NT diet) for a period of 21 days. Blood samples, intestinal tissues and digesta were collected at necropsy and analyzed for morphology, digestive enzyme activities, microbial populations, peripheral immune cells, expression of intestinal innate immunity and barrier-related genes and proteins. Compared with NBW piglets, IUGR piglets had significantly lower average daily dry matter intake and body weight gain (P<0.05). Moreover, IUGR markedly decreased the villous height and villi: crypt ratio in duodenum (P<0.05), as well as the maltase activity in jejunum (P<0.05). In addition, IUGR significantly decreased the serum concentrations of IgA, IL-1βand IL-10 (P<0.05), as well as the percentage of peripheral lymphocytes (P<0.05). Meanwhile, the down-regulation of innate immunity-related genes such as TOLLIP (P<0.05), TLR-9 (P = 0.08) and TLR-2 (P = 0.07) was observed in the ileum of IUGR relative to NBW piglets. Regardless of birth weight, however, feeding NT diet markedly decreased (P<0.05) feed conversion ratio, increased the villous height in duodenum (P<0.05), activities of lactase and maltase in jejunum (P<0.05), count of peripheral leukocytes (P<0.05), serum concentrations of IgA and IL-1β as well as gene expressions of TLR-9, TLR-4 and TOLLIP in ileum (P<0.05). In addition, expressions of tight junction proteins (Claudin-1 and ZO-1) in ileum were markedly increased by feeding NT diet relative to CON diet (P<0.05). These results indicated that IUGR impaired growth performance, intestinal and immune function, but dietary nucleotides supplementation improved nutrients utilization, intestinal function and immunity.


DDX19 Inhibits Type I Interferon Production by Disrupting TBK1-IKKε-IRF3 Interactions and Promoting TBK1 and IKKε Degradation.

  • Kunli Zhang‎ et al.
  • Cell reports‎
  • 2019‎

DExD/H-box helicase members are key receptors for recognizing viral nucleic acids, and they regulate retinoic acid-inducible gene I (RIG-I)-like receptor (RLR)-mediated type I interferon (IFN) production. Here, we report that the DExD/H-box helicase family member DExD/H-box RNA helicase 19 (DDX19) is a negative regulator of type I IFN production. Ectopic expression of DDX19 suppressed poly(I:C) (polyinosinic-polycytidylic acid)- and Sendai-virus-induced type I IFN production, whereas knockdown of DDX19 expression enhanced type I IFN production. Mechanistically, DDX19 inhibited TANK-binds kinase 1 (TBK1)- and inhibitor-κb kinase ε (IKKε)-mediated phosphorylation of interferon regulatory factor 3 (IRF3) by disrupting the interaction between TBK1 or IKKε and IRF3. Additionally, DDX19 recruited Lamtor2 and then formed the TBK1-IKKε-Lamtor2-DDX19-IRF3 complex to suppress IFN production by promoting TBK1 and IKKε degradation. We generated Ddx19 knockout mice using transcription activator-like effector nucleases (TALENs) and found that Ddx19 deficiency in vivo augmented type I IFN production, resulting in suppression of encephalomyocarditis virus replication. These data show that DDX19 is an important negative regulator of RLR-mediated type I IFN production.


An integrated chromatin accessibility and transcriptome landscape of human pre-implantation embryos.

  • Longqi Liu‎ et al.
  • Nature communications‎
  • 2019‎

Human pre-implantation embryonic development involves extensive changes in chromatin structure and transcriptional activity. Here, we report on LiCAT-seq, a technique that enables simultaneous profiling of chromatin accessibility and gene expression with ultra-low input of cells, and map the chromatin accessibility and transcriptome landscapes for human pre-implantation embryos. We observed global difference in chromatin accessibility between sperm and all stages of embryos, finding that the accessible regions in sperm tend to occur in gene-poor genomic regions. Integrative analyses between the two datasets reveals strong association between the establishment of accessible chromatin and embryonic genome activation (EGA), and uncovers transcription factors and endogenous retrovirus (ERVs) specific to EGA. In particular, a large proportion of the early activated genes and ERVs are bound by DUX4 and become accessible as early as the 2- to 4-cell stages. Our results thus offer mechanistic insights into the molecular events inherent to human pre-implantation development.


Cross-sectional associations of active transport, employment status and objectively measured physical activity: analyses from the National Health and Nutrition Examination Survey.

  • Lin Yang‎ et al.
  • Journal of epidemiology and community health‎
  • 2018‎

To investigate associations between active transport, employment status and objectively measured moderate-to-vigorous physical activity (MVPA) in a representative sample of US adults.


Prevalence and authenticity of de-novo segmental aneuploidy (>16 Mb) in human blastocysts as detected by next-generation sequencing.

  • Shuang Zhou‎ et al.
  • Reproductive biomedicine online‎
  • 2018‎

What is the prevalence and authenticity of de-novo segmental aneuploidies (>16 Mb) detected by next-generation sequencing (NGS) in human preimplantation blastocysts?


Chemically-induced cancers do not originate from bone marrow-derived cells.

  • Hui Lin‎ et al.
  • PloS one‎
  • 2012‎

The identification and characterization of cancer stem cells (CSCs) is imperative to understanding the mechanism of cancer pathogenesis. Growing evidence suggests that CSCs play critical roles in the development and progression of cancer. However, controversy exists as to whether CSCs arise from bone marrow-derived cells (BMDCs).


Genome-wide DNA methylation analysis in jejunum of Sus scrofa with intrauterine growth restriction.

  • Yue Hu‎ et al.
  • Molecular genetics and genomics : MGG‎
  • 2018‎

Intrauterine growth restriction (IUGR) may elicit a series of postnatal body developmental and metabolic diseases due to their impaired growth and development in the mammalian embryo/fetus during pregnancy. In the present study, we hypothesized that IUGR may lead to abnormally regulated DNA methylation in the intestine, causing intestinal dysfunctions. We applied reduced representation bisulfite sequencing (RRBS) technology to study the jejunum tissues from four newborn IUGR piglets and their normal body weight (NBW) littermates. The results revealed extensively regional DNA methylation changes between IUGR/NBW pairs from different gilts, affecting dozens of genes. Hiseq-based bisulfite sequencing PCR (Hiseq-BSP) was used for validations of 19 genes with epigenetic abnormality, confirming three genes (AIFM1, MTMR1, and TWIST2) in extra samples. Furthermore, integrated analysis of these 19 genes with proteome data indicated that there were three main genes (BCAP31, IRAK1, and AIFM1) interacting with important immunity- or metabolism-related proteins, which could explain the potential intestinal dysfunctions of IUGR piglets. We conclude that IUGR can lead to disparate DNA methylation in the intestine and these changes may affect several important biological processes such as cell apoptosis, cell differentiation, and immunity, which provides more clues linking IUGR and its long-term complications.


The Antioxidant Procyanidin Reduces Reactive Oxygen Species Signaling in Macrophages and Ameliorates Experimental Colitis in Mice.

  • Lu Chen‎ et al.
  • Frontiers in immunology‎
  • 2017‎

Management of inflammatory bowel disease (IBD) is a real clinical challenge. Despite intense investigation, the mechanisms of IBD remain substantially unidentified. Some inflammatory conditions, such as matrix metalloproteinases (MMPs) and the nuclear factor-κB (NF-κB) and NOD-like receptor protein 3 (NLRP3) inflammasome signaling pathways, are reported to contribute to the development and maintenance of IBD. Regulation of their common upstream signaling, that is, reactive oxygen species (ROS), may be important to control the progression of IBD. In the present study, we found that procyanidin, a powerful antioxidation flavonoid, has a significant effect on ROS clearance on THP-1 macrophages after lipopolysaccharide (LPS) or LPS-combined adenosine triphosphate stimulation, thus downregulating MMP9 expression, suppressing NF-κB signaling, and interrupting the formation of the NLRP3 inflammasome. Moreover, our in vivo data showed that procyanidin attenuated Dextran sulfate sodium-induced experimental colitis in a dose-dependent fashion by suppressing the expression of MMP9, NF-κB, and NLRP3 inflammasome signaling in colonic tissues in mice. Overall, our results suggested that targeting ROS could be a potential therapeutic choice for colonic inflammation.


Ubiquitin-Conjugating Enzyme 2S Enhances Viral Replication by Inhibiting Type I IFN Production through Recruiting USP15 to Deubiquitinate TBK1.

  • Li Huang‎ et al.
  • Cell reports‎
  • 2020‎

Type I interferon (IFN) plays an essential role in the host innate immune responses. Several ubiquitin-conjugating enzyme (E2) family members were reported to regulate type I IFN production and host antiviral immune responses. However, the molecular mechanisms are still not fully understood. Here, we report that UBE2S acts as a negative regulator in the type I IFN signaling pathway. Ectopic expression of UBE2S inhibits host antiviral immune responses and enhances viral replications, whereas deficiency of UBE2S enhances host antiviral immune responses and suppresses viral replications both in vitro and in vivo. Inhibition of type І IFN production by UBE2S is independent on its E2 and E3 enzymic activity. Mechanistically, UBE2S interacts with TBK1 and recruits ubiquitin-specific protease 15 (USP15) to remove Lys63 (K63)-linked polyubiquitin chains of TBK1. Our findings reveal a role of the UBE2S-USP15-TBK1 axis in the regulation of host antiviral innate immune responses.


SARS-CoV-2 binds platelet ACE2 to enhance thrombosis in COVID-19.

  • Si Zhang‎ et al.
  • Journal of hematology & oncology‎
  • 2020‎

Critically ill patients diagnosed with COVID-19 may develop a pro-thrombotic state that places them at a dramatically increased lethal risk. Although platelet activation is critical for thrombosis and is responsible for the thrombotic events and cardiovascular complications, the role of platelets in the pathogenesis of COVID-19 remains unclear.


MiR-424-5p regulates cell cycle and inhibits proliferation of hepatocellular carcinoma cells by targeting E2F7.

  • Yichao Zhao‎ et al.
  • PloS one‎
  • 2020‎

This study aims to explore the mechanism of the miR-424-5p/E2F7 axis in hepatocellular carcinoma (HCC) and provide new ideas for targeted therapy of HCC.


Chromobox 4 facilitates tumorigenesis of lung adenocarcinoma through the Wnt/β-catenin pathway.

  • Zuoyun Wang‎ et al.
  • Neoplasia (New York, N.Y.)‎
  • 2021‎

Chromobox 4 (CBX4) is a core component of polycomb-repressive complex 1 with important roles in cancer biology and tissue homeostasis. Aberrant expression of CBX4 has been implicated in several human malignancies. However, its role and underlying mechanisms in the tumorigenesis of lung adenocarcinoma (LUAD) have not been defined in vivo. Here, we found that expression of CBX4 was frequently up-regulated in human LUAD samples and correlated with poor patient survival. Importantly, genetic ablation of CBX4 greatly dampened lung tumor formation and improved survival in the KrasG12D/P53L/L (KP) autochthonous mouse model of LUAD. In addition, CBX4 depletion significantly inhibited proliferation and anchorage-independent growth of KP mouse embryonic fibroblasts. Moreover, ectopic CBX4 expression clearly promoted proliferation and anchorage-independent growth in both human and mouse LUAD cells, whereas silencing of CBX4 exerted opposite effects. Mechanistically, CBX4 promoted growth of LUAD cells through activation of the Wnt/β-catenin pathway. Furthermore, expression levels of CBX4 were positively correlated with β-catenin in human LUAD samples. In conclusion, our data suggest that CBX4 plays an oncogenic role via the Wnt/β-catenin pathway and could serve as a potential therapeutic target in LUAD.


Biallelic mutations in MOS cause female infertility characterized by human early embryonic arrest and fragmentation.

  • Yin-Li Zhang‎ et al.
  • EMBO molecular medicine‎
  • 2021‎

Early embryonic arrest and fragmentation (EEAF) is a common phenomenon leading to female infertility, but the genetic determinants remain largely unknown. The Moloney sarcoma oncogene (MOS) encodes a serine/threonine kinase that activates the ERK signaling cascade during oocyte maturation in vertebrates. Here, we identified four rare variants of MOS in three infertile female individuals with EEAF that followed a recessive inheritance pattern. These MOS variants encoded proteins that resulted in decreased phosphorylated ERK1/2 level in cells and oocytes, and displayed attenuated rescuing effects on cortical F-actin assembly. Using oocyte-specific Erk1/2 knockout mice, we verified that MOS-ERK signal pathway inactivation in oocytes caused EEAF as human. The RNA sequencing data revealed that maternal mRNA clearance was disrupted in human mature oocytes either with MOS homozygous variant or with U0126 treatment, especially genes relative to mitochondrial function. Mitochondrial dysfunction was observed in oocytes with ERK1/2 deficiency or inactivation. In conclusion, this study not only uncovers biallelic MOS variants causes EEAF but also demonstrates that MOS-ERK signaling pathway drives human oocyte cytoplasmic maturation to prevent EEAF.


Hydrogen attenuates postoperative pain through Trx1/ASK1/MMP9 signaling pathway.

  • Juan Li‎ et al.
  • Journal of neuroinflammation‎
  • 2023‎

Postoperative pain is a serious clinical problem with a poorly understood mechanism, and lacks effective treatment. Hydrogen (H2) can reduce neuroinflammation; therefore, we hypothesize that H2 may alleviate postoperative pain, and aimed to investigate the underlying mechanism.


Air pollution, physical activity and health: A mapping review of the evidence.

  • Marko Tainio‎ et al.
  • Environment international‎
  • 2021‎

Exposure to air pollution and physical inactivity are both significant risk factors for non-communicable diseases (NCDs). These risk factors are also linked so that the change in exposure in one will impact risks and benefits of the other. These links are well captured in the active transport (walking, cycling) health impact models, in which the increases in active transport leading to increased inhaled dose of air pollution. However, these links are more complex and go beyond the active transport research field. Hence, in this study, we aimed to summarize the empirical evidence on the links between air pollution and physical activity, and their combined effect on individual and population health.


Hydrogen Attenuates Endotoxin-Induced Lung Injury by Activating Thioredoxin 1 and Decreasing Tissue Factor Expression.

  • Qian Li‎ et al.
  • Frontiers in immunology‎
  • 2021‎

Endotoxin-induced lung injury is one of the major causes of death induced by endotoxemia, however, few effective therapeutic options exist. Hydrogen inhalation has recently been shown to be an effective treatment for inflammatory lung injury, but the underlying mechanism is unknown. In the current study we aim to investigate how hydrogen attenuates endotoxin-induced lung injury and provide reference values for the clinical application of hydrogen. LPS was used to establish an endotoxin-induced lung injury mouse model. The survival rate and pulmonary pathologic changes were evaluated. THP-1 and HUVECC cells were cultured in vitro. The thioredoxin 1 (Trx1) inhibitor was used to evaluate the anti-inflammatory effects of hydrogen. Hydrogen significantly improved the survival rate of mice, reduced pulmonary edema and hemorrhage, infiltration of neutrophils, and IL-6 secretion. Inhalation of hydrogen decreased tissue factor (TF) expression and MMP-9 activity, while Trx1 expression was increased in the lungs and serum of endotoxemia mice. LPS-stimulated THP-1 and HUVEC-C cells in vitro and showed that hydrogen decreases TF expression and MMP-9 activity, which were abolished by the Trx1 inhibitor, PX12. Hydrogen attenuates endotoxin-induced lung injury by decreasing TF expression and MMP-9 activity via activating Trx1. Targeting Trx1 by hydrogen may be a potential treatment for endotoxin-induced lung injury.


Induced pluripotent stem cell (iPSC) line (ZZUNEUi009-A) from a healthy female individual.

  • Mengduan Liu‎ et al.
  • Stem cell research‎
  • 2021‎

Induced pluripotent stem cells (iPSCs) can be used to generate different types of somatic cells in vitro and are a useful tool for investigating drug and disease mechanisms. Here, we generated human induced pluripotent stem cell (iPSC) line ZZUNEUi009-A from an apparently healthy 28-year-old female by reprogramming peripheral blood mononuclear cells with non-integrating vector. The generated iPSCs was pluripotent, maintained a stable karyotype, and could generate the three layers (ectoderm, mesoderm, and endoderm) in vitro.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: