Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,761 papers

APP processing is regulated by cytoplasmic phosphorylation.

  • Ming-Sum Lee‎ et al.
  • The Journal of cell biology‎
  • 2003‎

Amyloid-beta peptide (Abeta) aggregate in senile plaque is a key characteristic of Alzheimer's disease (AD). Here, we show that phosphorylation of amyloid precursor protein (APP) on threonine 668 (P-APP) may play a role in APP metabolism. In AD brains, P-APP accumulates in large vesicular structures in afflicted hippocampal pyramidal neurons that costain with antibodies against endosome markers and the beta-secretase, BACE1. Western blot analysis reveals increased levels of T668-phosphorylated APP COOH-terminal fragments in hippocampal lysates from many AD but not control subjects. Importantly, P-APP cofractionates with endosome markers and BACE1 in an iodixanol gradient and displays extensive colocalization with BACE1 in rat primary cortical neurons. Furthermore, APP COOH-terminal fragments generated by BACE1 are preferentially phosphorylated on T668 verses those produced by alpha-secretase. The production of Abeta is significantly reduced when phosphorylation of T668 is either abolished by mutation or inhibited by T668 kinase inhibitors. Together, these results suggest that T668 phosphorylation may facilitate the BACE1 cleavage of APP to increase Abeta generation.


A hierarchical Bayesian model for comparing transcriptomes at the individual transcript isoform level.

  • Sika Zheng‎ et al.
  • Nucleic acids research‎
  • 2009‎

The complexity of mammalian transcriptomes is compounded by alternative splicing which allows one gene to produce multiple transcript isoforms. However, transcriptome comparison has been limited to differential analysis at the gene level instead of the individual transcript isoform level. High-throughput sequencing technologies and high-resolution tiling arrays provide an unprecedented opportunity to compare transcriptomes at the level of individual splice variants. However, sequence read coverage or probe intensity at each position may represent a family of splice variants instead of one single isoform. Here we propose a hierarchical Bayesian model, BASIS (Bayesian Analysis of Splicing IsoformS), to infer the differential expression level of each transcript isoform in response to two conditions. A latent variable was introduced to perform direct statistical selection of differentially expressed isoforms. Model parameters were inferred based on an ergodic Markov chain generated by our Gibbs sampler. BASIS has the ability to borrow information across different probes (or positions) from the same genes and different genes. BASIS can handle the heteroskedasticity of probe intensity or sequence read coverage. We applied BASIS to a human tiling-array data set and a mouse RNA-seq data set. Some of the predictions were validated by quantitative real-time RT-PCR experiments.


Probing the endosperm gene expression landscape in Brassica napus.

  • Yi Huang‎ et al.
  • BMC genomics‎
  • 2009‎

In species with exalbuminous seeds, the endosperm is eventually consumed and its space occupied by the embryo during seed development. However, the main constituent of the early developing seed is the liquid endosperm, and a significant portion of the carbon resources for the ensuing stages of seed development arrive at the embryo through the endosperm. In contrast to the extensive study of species with persistent endosperm, little is known about the global gene expression pattern in the endosperm of exalbuminous seed species such as crucifer oilseeds.


Silkworm coatomers and their role in tube expansion of posterior silkgland.

  • Qiao Wang‎ et al.
  • PloS one‎
  • 2010‎

Coat protein complex I (COPI) vesicles, coated by seven coatomer subunits, are mainly responsible for Golgi-to-ER transport. Silkworm posterior silkgland (PSG), a highly differentiated secretory tissue, secretes fibroin for silk production, but many physiological processes in the PSG cells await further investigation.


A miniaturized sandwich immunoassay platform for the detection of protein-protein interactions.

  • Qiongming Liu‎ et al.
  • BMC biotechnology‎
  • 2010‎

Analysis of protein-protein interactions (PPIs) is a valuable approach for the characterization of huge networks of protein complexes or proteins of unknown function. Co-immunoprecipitation (coIP) using affinity resins coupled to protein A/G is the most widely used method for PPI detection. However, this traditional large scale resin-based coIP is too laborious and time consuming. To overcome this problem, we developed a miniaturized sandwich immunoassay platform (MSIP) by combining antibody array technology and coIP methods.


Comparative transcriptome analysis of Bacillus subtilis responding to dissolved oxygen in adenosine fermentation.

  • Wen-Bang Yu‎ et al.
  • PloS one‎
  • 2011‎

Dissolved oxygen (DO) is an important factor for adenosine fermentation. Our previous experiments have shown that low oxygen supply in the growth period was optimal for high adenosine yield. Herein, to better understand the link between oxygen supply and adenosine productivity in B. subtilis (ATCC21616), we sought to systematically explore the effect of DO on genetic regulation and metabolism through transcriptome analysis. The microarrays representing 4,106 genes were used to study temporal transcript profiles of B. subtilis fermentation in response to high oxygen supply (agitation 700 r/min) and low oxygen supply (agitation 450 r/min). The transcriptome data analysis revealed that low oxygen supply has three major effects on metabolism: enhance carbon metabolism (glucose metabolism, pyruvate metabolism and carbon overflow), inhibit degradation of nitrogen sources (glutamate family amino acids and xanthine) and purine synthesis. Inhibition of xanthine degradation was the reason that low oxygen supply enhanced adenosine production. These provide us with potential targets, which can be modified to achieve higher adenosine yield. Expression of genes involved in energy, cell type differentiation, protein synthesis was also influenced by oxygen supply. These results provided new insights into the relationship between oxygen supply and metabolism.


A Sir2-like protein participates in mycobacterial NHEJ.

  • Zhongdao Li‎ et al.
  • PloS one‎
  • 2011‎

In eukaryotic cells, repair of DNA double-strand breaks (DSBs) by the nonhomologous end-joining (NHEJ) pathway is critical for genome stability. In contrast to the complex eukaryotic repair system, bacterial NHEJ apparatus consists of only two proteins, Ku and a multifunctional DNA ligase (LigD), whose functional mechanism has not been fully clarified. We show here for the first time that Sir2 is involved in the mycobacterial NHEJ repair pathway. Here, using tandem affinity purification (TAP) screening, we have identified an NAD-dependent deacetylase in mycobacteria which is a homologue of the eukaryotic Sir2 protein and interacts directly with Ku. Results from an in vitro glutathione S-transferase (GST) pull-down assay suggest that Sir2 interacts directly with LigD. Plasmid-based end-joining assays revealed that the efficiency of DSB repair in a sir2 deletion mutant was reduced 2-fold. Moreover, the Δsir2 strain was about 10-fold more sensitive to ionizing radiation (IR) in the stationary phase than the wild-type. Our results suggest that Sir2 may function closely together with Ku and LigD in the nonhomologous end-joining pathway in mycobacteria.


Elevated expression of CDK4 in lung cancer.

  • Aibing Wu‎ et al.
  • Journal of translational medicine‎
  • 2011‎

The aim of the present study was to analyze the expression of Cyclin-dependent kinase 4 (CDK4) in lung cancer and its correlation with clinicopathologic features. Furthermore, the involvement of CDK4-mediated cell cycle progression and its molecular basis were investigated in the pathogenesis of lung cancer.


BMP-9-induced osteogenic differentiation of mesenchymal progenitors requires functional canonical Wnt/beta-catenin signalling.

  • Ni Tang‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2009‎

Bone morphogenetic protein 9 (BMP-9) is a member of the transforming growth factor (TGF)-beta/BMP superfamily, and we have demonstrated that it is one of the most potent BMPs to induce osteoblast differentiation of mesenchymal stem cells (MSCs). Here, we sought to investigate if canonical Wnt/beta-catenin signalling plays an important role in BMP-9-induced osteogenic differentiation of MSCs. Wnt3A and BMP-9 enhanced each other's ability to induce alkaline phosphatase (ALP) in MSCs and mouse embryonic fibroblasts (MEFs). Wnt antagonist FrzB was shown to inhibit BMP-9-induced ALP activity more effectively than Dkk1, whereas a secreted form of LPR-5 or low-density lipoprotein receptor-related protein (LRP)-6 exerted no inhibitory effect on BMP-9-induced ALP activity. beta-Catenin knockdown in MSCs and MEFs diminished BMP-9-induced ALP activity, and led to a decrease in BMP-9-induced osteocalcin reporter activity and BMP-9-induced expression of late osteogenic markers. Furthermore, beta-catenin knockdown or FrzB overexpression inhibited BMP-9-induced mineralization in vitro and ectopic bone formation in vivo, resulting in immature osteogenesis and the formation of chondrogenic matrix. Chromatin immunoprecipitation (ChIP) analysis indicated that BMP-9 induced recruitment of both Runx2 and beta-catenin to the osteocalcin promoter. Thus, we have demonstrated that canonical Wnt signalling, possibly through interactions between beta-catenin and Runx2, plays an important role in BMP-9-induced osteogenic differentiation of MSCs.


Discovery and implementation of transcriptional biomarkers of synthetic LXR agonists in peripheral blood cells.

  • Elizabeth A DiBlasio-Smith‎ et al.
  • Journal of translational medicine‎
  • 2008‎

LXRs (Liver X Receptor alpha and beta) are nuclear receptors that act as ligand-activated transcription factors. LXR activation causes upregulation of genes involved in reverse cholesterol transport (RCT), including ABCA1 and ABCG1 transporters, in macrophage and intestine. Anti-atherosclerotic effects of synthetic LXR agonists in murine models suggest clinical utility for such compounds.


A two-parameter generalized Poisson model to improve the analysis of RNA-seq data.

  • Sudeep Srivastava‎ et al.
  • Nucleic acids research‎
  • 2010‎

Deep sequencing of RNAs (RNA-seq) has been a useful tool to characterize and quantify transcriptomes. However, there are significant challenges in the analysis of RNA-seq data, such as how to separate signals from sequencing bias and how to perform reasonable normalization. Here, we focus on a fundamental question in RNA-seq analysis: the distribution of the position-level read counts. Specifically, we propose a two-parameter generalized Poisson (GP) model to the position-level read counts. We show that the GP model fits the data much better than the traditional Poisson model. Based on the GP model, we can better estimate gene or exon expression, perform a more reasonable normalization across different samples, and improve the identification of differentially expressed genes and the identification of differentially spliced exons. The usefulness of the GP model is demonstrated by applications to multiple RNA-seq data sets.


Analysis of the CD1 antigen presenting system in humanized SCID mice.

  • Jennifer L Lockridge‎ et al.
  • PloS one‎
  • 2011‎

CD1 molecules are glycoproteins that present lipids and glycolipids for recognition by T cells. CD1-dependent immune activation has been implicated in a wide range of immune responses, however, our understanding of the role of this pathway in human disease remains limited because of species differences between humans and other mammals: whereas humans express five different CD1 gene products (CD1a, CD1b, CD1c, CD1d, and CD1e), muroid rodents express only one CD1 isoform (CD1d). Here we report that immune deficient mice engrafted with human fetal thymus, liver, and CD34(+) hematopoietic stem cells develop a functional human CD1 compartment. CD1a, b, c, and d isoforms were highly expressed by human thymocytes, and CD1a(+) cells with a dendritic morphology were present in the thymic medulla. CD1(+) cells were also detected in spleen, liver, and lungs. APCs from spleen and liver were capable of presenting bacterial glycolipids to human CD1-restricted T cells. ELISpot analyses of splenocytes demonstrated the presence of CD1-reactive IFN-γ producing cells. CD1d tetramer staining directly identified human iNKT cells in spleen and liver samples from engrafted mice, and injection of the glycolipid antigen α-GalCer resulted in rapid elevation of human IFN-γ and IL-4 levels in the blood indicating that the human iNKT cells are biologically active in vivo. Together, these results demonstrate that the human CD1 system is present and functionally competent in this humanized mouse model. Thus, this system provides a new opportunity to study the role of CD1-related immune activation in infections to human-specific pathogens.


Rapid degradation of methylene blue in a novel heterogeneous Fe3O4 @rGO@TiO2-catalyzed photo-Fenton system.

  • Xiaoling Yang‎ et al.
  • Scientific reports‎
  • 2015‎

Herein, a ternary nanocomposite with TiO2 nanoparticles anchored on reduced graphene oxide (rGO)-encapsulated Fe3O4 spheres (Fe3O4@rGO@TiO2) is presented as a high efficient heterogeneous catalyst for photo-Fenton degradation of recalcitrant pollutants under neutral pH. Fe3O4@rGO@TiO2 was synthesized by depositing TiO2 nanoparticles on the surface of the Fe3O4 spheres wrapped by graphene oxide (GO) which was obtained by an electrostatic layer-by-layer method. This as-prepared catalyst reflected good ferromagnetism and superior stability which makes it convenient to be separated and recycled. Due to the synergic effects between the different components composed the catalyst, swift reduction of Fe(3+) can be achieved to regenerate Fe(2+). Fe3O4@rGO@TiO2 exhibited enhancing catalytic activity for the degradation of azo-dyes compared with Fe3O4, Fe3O4@SiO2@TiO2 or SiO2@rGO@TiO2, further conforming the rapid redox reaction between Fe(2+) and Fe(3+). All these merits indicate that the composite catalyst possesses great potential for visible-light driven destruction of organic compounds.


Sodium salicylate suppresses GABAergic inhibitory activity in neurons of rodent dorsal raphe nucleus.

  • Yan Jin‎ et al.
  • PloS one‎
  • 2015‎

Sodium salicylate (NaSal), a tinnitus inducing agent, can activate serotonergic (5-HTergic) neurons in the dorsal raphe nucleus (DRN) and can increase serotonin (5-HT) level in the inferior colliculus and the auditory cortex in rodents. To explore the underlying neural mechanisms, we first examined effects of NaSal on neuronal intrinsic properties and the inhibitory synaptic transmissions in DRN slices of rats by using whole-cell patch-clamp technique. We found that NaSal hyperpolarized the resting membrane potential, decreased the input resistance, and suppressed spontaneous and current-evoked firing in GABAergic neurons, but not in 5-HTergic neurons. In addition, NaSal reduced GABAergic spontaneous and miniature inhibitory postsynaptic currents in 5-HTergic neurons. We next examined whether the observed depression of GABAergic activity would cause an increase in the excitability of 5-HTergic neurons using optogenetic technique in DRN slices of the transgenic mouse with channelrhodopsin-2 expressed in GABAergic neurons. When the GABAergic inhibition was enhanced by optical stimulation to GABAergic neurons in mouse DRN, NaSal significantly depolarized the resting membrane potential, increased the input resistance and increased current-evoked firing of 5-HTergic neurons. However, NaSal would fail to increase the excitability of 5-HTergic neurons when the GABAergic synaptic transmission was blocked by picrotoxin, a GABA receptor antagonist. Our results indicate that NaSal suppresses the GABAergic activities to raise the excitability of local 5-HTergic neural circuits in the DRN, which may contribute to the elevated 5-HT level by NaSal in the brain.


Draft Genome Sequence of a Phthalate Ester-Degrading Bacterium, Rhizobium sp. LMB-1, Isolated from Cultured Soil.

  • Wen-Juan Tang‎ et al.
  • Genome announcements‎
  • 2015‎

Rhizobium sp. LMB-1, newly isolated from greenhouse soil, can effectively degrade phthalate. Here, we present a 5.2-Mb assembly of this Rhizobium sp. genome for the first time. It may provide abundant molecular information for the transformation of phthalates.


Gastric cancer-derived mesenchymal stem cells prompt gastric cancer progression through secretion of interleukin-8.

  • Wei Li‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2015‎

Bone marrow mesenchymal stem cells (BM-MSCs) have been identified to be closely associated with tumor growth and progression. However, the roles of tumor-resident MSCs in cancer have not been thoroughly clarified. This study was to investigate the regulating effect of gastric cancer-derived MSCs (GC-MSCs) on gastric cancer and elucidate the underlying mechanism.


A microfluidic live cell assay to study anthrax toxin induced cell lethality assisted by conditioned medium.

  • Jie Shen‎ et al.
  • Scientific reports‎
  • 2015‎

It is technically challenging to investigate the function of secreted protein in real time by supply of conditioned medium that contains secreted protein of interest. The internalization of anthrax toxin is facilitated by a secreted protein Dickkopf-1 (DKK1) and its receptor, and eventually leads to cell lethality. To monitor the dynamic interplay between these components in live cells, we use an integrated microfluidic device to perform the cell viability assays with real-time controlled culture microenvironment in parallel. Conditioned medium, which contains the secreted proteins from specific cell lines, can be continuously pumped towards the cells that exposed to toxin. The exogenous DKK1 secreted from distant cells is able to rescue the sensitivity to toxin for those DKK1-knocked-down cells. This high-throughput assay allows us to precisely quantify the dynamic interaction between key components that cause cell death, and provide independent evidence of the function of DKK1 in the complex process of anthrax toxin internalization.


Identification of Outer Membrane and Exoproteins of Carbapenem-Resistant Multilocus Sequence Type 258 Klebsiella pneumoniae.

  • Amanda J Brinkworth‎ et al.
  • PloS one‎
  • 2015‎

Carbapenem-resistant Klebsiella pneumoniae strains have emerged as a cause of life-threatening infections in susceptible individuals (e.g., transplant recipients and critically ill patients). Strains classified as multilocus sequence type (ST) 258 are among the most prominent causes of carbapenem-resistant K. pneumoniae infections worldwide, but the basis for the success of this lineage remains incompletely determined. To gain a more comprehensive view of the molecules potentially involved in the success of ST258, we used a proteomics approach to identify surface-associated and culture supernatant proteins produced by ST258. Protein samples were prepared from varied culture conditions in vitro, and were analyzed by a combination of two-dimensional electrophoresis and liquid chromatography followed by tandem mass spectrometry (LC-MS/MS). We identified a total of 193 proteins in outer membrane preparations from bacteria cultured in Luria-Bertani broth (LB) or RPMI 1640 tissue culture media (RPMI). Compared with LB, several iron-acquisition proteins, including IutA, HmuR, HmuS, CirA, FepA, FitA, FoxA, FhuD, and YfeX, were more highly expressed in RPMI. Of the 177 proteins identified in spent media, only the fimbrial subunit, MrkA, was predicted to be extracellular, a finding that suggests few proteins (or a limited quantity) are freely secreted by ST258. Notably, we discovered 203 proteins not reported in previous K. pneumoniae proteome studies. In silico modeling of proteins with unknown function revealed several proteins with beta-barrel transmembrane structures typical of porins, as well as possible host-interacting proteins. Taken together, these findings contribute several new targets for the mechanistic study of drug-resistance and pathogenesis by ST258 K. pneumoniae isolates.


Structure and function of Mycobacterium smegmatis 7-keto-8-aminopelargonic acid (KAPA) synthase.

  • Shanghua Fan‎ et al.
  • The international journal of biochemistry & cell biology‎
  • 2015‎

The biotin biosynthesis pathway is an attractive target for development of novel drugs against mycobacterial pathogens, however there are as yet no suitable inhibitors that target this pathway in mycobacteria. 7-Keto-8-aminopelargonic acid synthase (KAPA synthase, BioF) is the enzyme which catalyzes the first committed step of the biotin synthesis pathway, but both its structure and function in mycobacteria remain unresolved. Here we present the crystal structure of Mycobacterium smegmatis BioF (MsBioF). The structure reveals an incomplete dimer, and the active site organization is similar to, but distinct from Escherichia coli 8-amino-7-oxononanoate synthase (EcAONS), the E. coli homologue of BioF. To investigate the influence of structural characteristics on the function of MsBioF, we deleted bioF in M. smegmatis and confirmed that BioF is required for growth in the absence of exogenous biotin. Based on structural and mutagenesis studies, we confirmed that pyridoxal 5'-phosphate (PLP) binding site residues His129, Lys235 and His200 are essential for MsBioF activity in vivo and residue Glu171 plays an important, but not essential role in MsBioF activity. The N-terminus (residues 1-37) is also essential for MsBioF activity in vivo. The structure and function of MsBioF reported here provides further insights for developing new anti-tuberculosis inhibitors aimed at the biotin synthesis pathway.


Could a deletion in neuraminidase stalk strengthen human tropism of the novel avian influenza virus H7N9 in China, 2013?

  • Liang Chen‎ et al.
  • International journal of environmental research and public health‎
  • 2015‎

Objective. A novel avian influenza A virus (AIV) H7N9 subtype which emerged in China in 2013 caused worldwide concern. Deletion of amino-acids 69 to 73 in the neuraminidase stalk was its most notable characteristic. This study is aimed to discuss the tropism and virulence effects of this deletion.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: