Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Repeated exposure to propofol in the neonatal period impairs hippocampal synaptic plasticity and the recognition function of rats in adulthood.

  • Jie Wan‎ et al.
  • Brain research bulletin‎
  • 2021‎

Anesthesia of neonates with propofol induces persistent behavioral abnormalities in adulthood. Although propofol-triggered apoptosis of neurons in the developing brain may contribute to the development of cognitive deficits, the mechanism of neurotoxicity induced by neonatal exposure to propofol remains unclear. In this study, the effects of neonatal propofol anesthesia on synaptic plasticity and neurocognitive function were investigated. Postnatal day 7 (PND-7) Sprague-Dawley rats were intraperitoneally injected with fat emulsion or 20, 40 or 60 mg/kg propofol for three consecutive days. The expression of brain-derived neurotrophic factor (BDNF), tropomyosin-related kinase B (TrkB) and postsynaptic density protein 95 (PSD-95) in the rat hippocampus at PND-10 and PND-12 was measured by Western blotting. The number of dendritic branches, total dendritic length and dendritic spine density were observed by Golgi-Cox staining 24 h and 72 h after the last propofol administration. Long-term potentiation (LTP) was measured electrophysiologically in hippocampus of PND-60 rats to evaluate the synaptic function. The learning and memory abilities of rats were evaluated by Morris water maze (MWM) experiments, Novel object recognition test (NORT) and Object location test (OLT) at PND-60. Our results showed that neonatal exposure to propofol significantly inhibited the expression of BDNF, TrkB and PSD-95 in the rat hippocampus. The number of dendritic branches, total dendritic length and dendritic spine density of neurons in the rat hippocampus were markedly reduced after neonatal propofol anesthesia. LTP was significantly diminished in hippocampus of PND-60 rats after repeated exposure to propofol in the neonatal period. Morris water maze experiments showed that repeated neonatal exposure to propofol significantly prolonged the escape latency and decreased the time spent in the target quadrant and the number of platform crossings. NORT and OLT showed that repeated neonatal exposure to propofol markedly reduced the Investigation Time for novel object or location. All of the results above indicate that repeated exposure to propofol in the neonatal period can impair hippocampal synaptic plasticity and the recognition function of rats in adulthood.


Long non-coding RNA MIAT impairs neurological function in ischemic stroke via up-regulating microRNA-874-3p-targeted IL1B.

  • Shuai Zhang‎ et al.
  • Brain research bulletin‎
  • 2021‎

Long non-coding RNAs (lncRNAs) have diagnostic and therapeutic values in the setting of ischemic stroke (IS). Here, we evaluated the value of myocardial infarction-associated transcript (MIAT) in IS with the involvement of microRNA (miR)-874-3p/interleukin (IL) 1B.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: