Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 8 papers out of 8 papers

CCAT: Combinatorial Code Analysis Tool for transcriptional regulation.

  • Peng Jiang‎ et al.
  • Nucleic acids research‎
  • 2014‎

Combinatorial interplay among transcription factors (TFs) is an important mechanism by which transcriptional regulatory specificity is achieved. However, despite the increasing number of TFs for which either binding specificities or genome-wide occupancy data are known, knowledge about cooperativity between TFs remains limited. To address this, we developed a computational framework for predicting genome-wide co-binding between TFs (CCAT, Combinatorial Code Analysis Tool), and applied it to Drosophila melanogaster to uncover cooperativity among TFs during embryo development. Using publicly available TF binding specificity data and DNaseI chromatin accessibility data, we first predicted genome-wide binding sites for 324 TFs across five stages of D. melanogaster embryo development. We then applied CCAT in each of these developmental stages, and identified from 19 to 58 pairs of TFs in each stage whose predicted binding sites are significantly co-localized. We found that nearby binding sites for pairs of TFs predicted to cooperate were enriched in regions bound in relevant ChIP experiments, and were more evolutionarily conserved than other pairs. Further, we found that TFs tend to be co-localized with other TFs in a dynamic manner across developmental stages. All generated data as well as source code for our front-to-end pipeline are available at http://cat.princeton.edu.


Using high-density exon arrays to profile gene expression in closely related species.

  • Lan Lin‎ et al.
  • Nucleic acids research‎
  • 2009‎

Global comparisons of gene expression profiles between species provide significant insight into gene regulation, evolutionary processes and disease mechanisms. In this work, we describe a flexible and intuitive approach for global expression profiling of closely related species, using high-density exon arrays designed for a single reference genome. The high-density probe coverage of exon arrays allows us to select identical sets of perfect-match probes to measure expression levels of orthologous genes. This eliminates a serious confounding factor in probe affinity effects of species-specific microarray probes, and enables direct comparisons of estimated expression indexes across species. Using a newly designed Affymetrix exon array, with eight probes per exon for approximately 315,000 exons in the human genome, we conducted expression profiling in corresponding tissues from humans, chimpanzees and rhesus macaques. Quantitative real-time PCR analysis of differentially expressed candidate genes is highly concordant with microarray data, yielding a validation rate of 21/22 for human versus chimpanzee differences, and 11/11 for human versus rhesus differences. This method has the potential to greatly facilitate biomedical and evolutionary studies of gene expression in nonhuman primates and can be easily extended to expression array design and comparative analysis of other animals and plants.


Exploring genetic associations with ceRNA regulation in the human genome.

  • Mulin Jun Li‎ et al.
  • Nucleic acids research‎
  • 2017‎

Competing endogenous RNAs (ceRNAs) are RNA molecules that sequester shared microRNAs (miRNAs) thereby affecting the expression of other targets of the miRNAs. Whether genetic variants in ceRNA can affect its biological function and disease development is still an open question. Here we identified a large number of genetic variants that are associated with ceRNA's function using Geuvaids RNA-seq data for 462 individuals from the 1000 Genomes Project. We call these loci competing endogenous RNA expression quantitative trait loci or 'cerQTL', and found that a large number of them were unexplored in conventional eQTL mapping. We identified many cerQTLs that have undergone recent positive selection in different human populations, and showed that single nucleotide polymorphisms in gene 3΄UTRs at the miRNA seed binding regions can simultaneously regulate gene expression changes in both cis and trans by the ceRNA mechanism. We also discovered that cerQTLs are significantly enriched in traits/diseases associated variants reported from genome-wide association studies in the miRNA binding sites, suggesting that disease susceptibilities could be attributed to ceRNA regulation. Further in vitro functional experiments demonstrated that a cerQTL rs11540855 can regulate ceRNA function. These results provide a comprehensive catalog of functional non-coding regulatory variants that may be responsible for ceRNA crosstalk at the post-transcriptional level.


TimeMeter assesses temporal gene expression similarity and identifies differentially progressing genes.

  • Peng Jiang‎ et al.
  • Nucleic acids research‎
  • 2020‎

Comparative time series transcriptome analysis is a powerful tool to study development, evolution, aging, disease progression and cancer prognosis. We develop TimeMeter, a statistical method and tool to assess temporal gene expression similarity, and identify differentially progressing genes where one pattern is more temporally advanced than the other. We apply TimeMeter to several datasets, and show that TimeMeter is capable of characterizing complicated temporal gene expression associations. Interestingly, we find: (i) the measurement of differential progression provides a novel feature in addition to pattern similarity that can characterize early developmental divergence between two species; (ii) genes exhibiting similar temporal patterns between human and mouse during neural differentiation are under strong negative (purifying) selection during evolution; (iii) analysis of genes with similar temporal patterns in mouse digit regeneration and axolotl blastema differentiation reveals common gene groups for appendage regeneration with potential implications in regenerative medicine.


MiPred: classification of real and pseudo microRNA precursors using random forest prediction model with combined features.

  • Peng Jiang‎ et al.
  • Nucleic acids research‎
  • 2007‎

To distinguish the real pre-miRNAs from other hairpin sequences with similar stem-loops (pseudo pre-miRNAs), a hybrid feature which consists of local contiguous structure-sequence composition, minimum of free energy (MFE) of the secondary structure and P-value of randomization test is used. Besides, a novel machine-learning algorithm, random forest (RF), is introduced. The results suggest that our method predicts at 98.21% specificity and 95.09% sensitivity. When compared with the previous study, Triplet-SVM-classifier, our RF method was nearly 10% greater in total accuracy. Further analysis indicated that the improvement was due to both the combined features and the RF algorithm. The MiPred web server is available at http://www.bioinf.seu.edu.cn/miRNA/. Given a sequence, MiPred decides whether it is a pre-miRNA-like hairpin sequence or not. If the sequence is a pre-miRNA-like hairpin, the RF classifier will predict whether it is a real pre-miRNA or a pseudo one.


Novel link between E2F1 and Smac/DIABLO: proapoptotic Smac/DIABLO is transcriptionally upregulated by E2F1.

  • Wei Xie‎ et al.
  • Nucleic acids research‎
  • 2006‎

Deregulated expression of E2F1 not only promotes S-phase entry but also induces apoptosis. Although it has been well documented that E2F1 is able to induce p53-dependent apoptosis via raising ARF activity, the mechanism by which E2F induces p53-independent apoptosis remains unclear. Here we report that E2F1 can directly bind to and activate the promoter of Smac/DIABLO, a mitochondrial proapoptotic gene, through the E2F1-binding sites BS2 (-542 approximately -535 bp) and BS3 (-200 approximately -193 bp). BS2 and BS3 appear to be utilized in combination rather than singly by E2F1 in activation of Smac/DIABLO. Activation of BS2 and BS3 are E2F1-specific, since neither E2F2 nor E2F3 is able to activate BS2 or BS3. Using the H1299 ER-E2F1 cell line where E2F1 activity can be conditionally induced, E2F1 has been shown to upregulate the Smac/DIABLO expression at both mRNA and protein levels upon 4-hydroxytamoxifen treatment, resulting in an enhanced mitochondria-mediated apoptosis. Reversely, reducing the Smac/DIABLO expression by RNA interference significantly diminishes apoptosis induced by E2F1. These results may suggest a novel mechanism by which E2F1 promotes p53-independent apoptosis through directly regulating its downstream mitochondrial apoptosis-inducing factors, such as Smac/DIABLO.


A comparison of RNA-Seq and high-density exon array for detecting differential gene expression between closely related species.

  • Song Liu‎ et al.
  • Nucleic acids research‎
  • 2011‎

RNA-Seq has emerged as a revolutionary technology for transcriptome analysis. In this article, we report a systematic comparison of RNA-Seq and high-density exon array for detecting differential gene expression between closely related species. On a panel of human/chimpanzee/rhesus cerebellum RNA samples previously examined by the high-density human exon junction array (HJAY) and real-time qPCR, we generated 48.68 million RNA-Seq reads. Our results indicate that RNA-Seq has significantly improved gene coverage and increased sensitivity for differentially expressed genes compared with the high-density HJAY array. Meanwhile, we observed a systematic increase in the RNA-Seq error rate for lowly expressed genes. Specifically, between-species DEGs detected by array/qPCR but missed by RNA-Seq were characterized by relatively low expression levels, as indicated by lower RNA-Seq read counts, lower HJAY array expression indices and higher qPCR raw cycle threshold values. Furthermore, this issue was not unique to between-species comparisons of gene expression. In the RNA-Seq analysis of MicroArray Quality Control human reference RNA samples with extensive qPCR data, we also observed an increase in both the false-negative rate and the false-positive rate for lowly expressed genes. These findings have important implications for the design and data interpretation of RNA-Seq studies on gene expression differences between and within species.


Enhancing biological signals and detection rates in single-cell RNA-seq experiments with cDNA library equalization.

  • Rhonda Bacher‎ et al.
  • Nucleic acids research‎
  • 2022‎

Considerable effort has been devoted to refining experimental protocols to reduce levels of technical variability and artifacts in single-cell RNA-sequencing data (scRNA-seq). We here present evidence that equalizing the concentration of cDNA libraries prior to pooling, a step not consistently performed in single-cell experiments, improves gene detection rates, enhances biological signals, and reduces technical artifacts in scRNA-seq data. To evaluate the effect of equalization on various protocols, we developed Scaffold, a simulation framework that models each step of an scRNA-seq experiment. Numerical experiments demonstrate that equalization reduces variation in sequencing depth and gene-specific expression variability. We then performed a set of experiments in vitro with and without the equalization step and found that equalization increases the number of genes that are detected in every cell by 17-31%, improves discovery of biologically relevant genes, and reduces nuisance signals associated with cell cycle. Further support is provided in an analysis of publicly available data.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: