Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 243 papers

Syntaxin-3 Binds and Regulates Both R- and L-Type Calcium Channels in Insulin-Secreting INS-1 832/13 Cells.

  • Li Xie‎ et al.
  • PloS one‎
  • 2016‎

Syntaxin (Syn)-1A mediates exocytosis of predocked insulin-containing secretory granules (SGs) during first-phase glucose-stimulated insulin secretion (GSIS) in part via its interaction with plasma membrane (PM)-bound L-type voltage-gated calcium channels (Cav). In contrast, Syn-3 mediates exocytosis of newcomer SGs that accounts for second-phase GSIS. We now hypothesize that the newcomer SG Syn-3 preferentially binds and modulates R-type Cav opening, which was postulated to mediate second-phase GSIS. Indeed, glucose-stimulation of pancreatic islet β-cell line INS-1 induced a predominant increase in interaction between Syn-3 and Cavα1 pore-forming subunits of R-type Cav2.3 and to lesser extent L-type Cavs, while confirming the preferential interactions between Syn-1A with L-type (Cav1.2, Cav1.3) Cavs. Consistently, direct binding studies employing heterologous HEK cells confirmed that Syn-3 preferentially binds Cav2.3, whereas Syn-1A prefers L-type Cavs. We then used siRNA knockdown (KD) of Syn-3 in INS-1 to study the endogenous modulatory actions of Syn-3 on Cav channels. Syn-3 KD enhanced Ca2+ currents by 46% attributed mostly to R- and L-type Cavs. Interestingly, while the transmembrane domain of Syn-1A is the putative functional domain modulating Cav activity, it is the cytoplasmic domain of Syn-3 that appears to modulate Cav activity. We conclude that Syn-3 may mimic Syn-1A in the ability to bind and modulate Cavs, but preferring Cav2.3 to perhaps participate in triggering fusion of newcomer insulin SGs during second-phase GSIS.


Identification of miRNomes reveals ssc-miR-30d-R_1 as a potential therapeutic target for PRRS viral infection.

  • Chengmin Wang‎ et al.
  • Scientific reports‎
  • 2016‎

Porcine reproductive and respiratory syndrome virus (PRRSV) is known to cause reproductive disorders, such as abortion, in pregnant sows as well as immunosuppressive respiratory complications, leading to severe respiratory tract infections in young pigs. In this study, an in-depth analysis of the miRNomes in mock- and virus-infected pig lungs was carried out. We found that highly expressed ssc-miR-30d-R_1 was decreased in infected lungs, and reduced levels were significantly correlated with infection by PRRSV. Moreover, ssc-miR-30d-R_1 was shown to target Toll-like receptor 4 (TLR4) and to suppress the production of immune cytokines through inhibition of the TLR4/MyD88/NF-κB pathway. ssc-miR-30d-R_1 significantly reduced viral infections and pathological changes in pig lungs in vivo. Our current study reveals the miRNomes of PRRSV-infected pig lungs and indicates that ssc-miR-30d-R_1 is potential therapeutic agent for controlling PRRSV infection.


Temozolomide-perillyl alcohol conjugate induced reactive oxygen species accumulation contributes to its cytotoxicity against non-small cell lung cancer.

  • Xingguo Song‎ et al.
  • Scientific reports‎
  • 2016‎

Temozolomide-perillyl alcohol conjugate (TMZ - POH), a novel temozolomide analog, was reported to play a cytotoxic role in triple-negative breast cancer and TMZ-resistant gliomas. In a current study we had demonstrated how TMZ - POH also exhibited its cytotoxicity against non-small cell lung cancer (NSCLC), the most common type of lung cancer, as evidence from cell/tumor proliferation inhibition, G2/M arrest, DNA damage and mitochondrial apoptosis. Importantly, TMZ - POH's cytotoxicity is closely related to reactive oxygen species (ROS) accumulation because it can be reversed by two ROS scavengers, catalase (CAT) and N-acetyl-L-cysteine (NAC). TMZ - POH induces mitochondrial transmembrane potential (MTP) decrease and ROS accumulation, in turn activates mitogen-activated protein kinase (MAPKs) signaling and mitochondrial apoptosis, and then exerts its cytotoxicity, thus proposing TMZ - POH as a potential therapeutic candidate for NSCLC.


Association between CYP17A1 rs3824755 and rs743572 gene polymorphisms and Alzheimer's disease in the Chinese Han population.

  • Li Xie‎ et al.
  • Neuroscience letters‎
  • 2016‎

The CYP17A1 gene encodes cytochrome P450c17α, an enzyme that catalyzes the formation of sex hormones, which have been linked to the pathogenesis of Alzheimer's disease (AD). An association between the CYP17A1 rs743572 single nucleotide polymorphism (SNP) and AD has been reported; however, the findings are controversial. In the present study, we investigated the association between rs743572 and another SNP, rs3824755, and AD risk in a Chinese Han population (n=207 patients and 239 controls), and their interaction with the apolipoprotein E (APOE) e4 allele. We found that the C allele and GC+CC genotypes of rs3824755 conferred protection against AD only in APOE e4 carriers. Both rs3824755 and rs743572 polymorphisms showed interactions with APOE e4. The C allele and GC+CC genotypes of rs3824755 acted as protective factors that decreased the risk of APOE e4 in AD. The CYP17A1 rs743572G allele and AG+GG genotypes were found to be potential risk factors that act synergetically with APOE e4. Moreover, the CA and GG haplotypes were protective and conferred a slight risk, respectively, in APOE e4 carriers. These results indicate that CYP17A1 rs3824755 and rs743572 are associated with AD in the Chinese Han population and act in combination with APOE e4.


Interferon gamma polymorphisms and hepatitis B virus-related liver cirrhosis risk in a Chinese population.

  • Yifan Sun‎ et al.
  • Cancer cell international‎
  • 2015‎

Previous studies proved that interferon gamma (IFN-γ) gene polymorphisms were associated with the risk of hepatitis B virus (HBV) infection. However, the association between IFN-γ polymorphisms and HBV-related liver cirrhosis (HBV-LC) risk is still unclear.


The diagnostic accuracy of circulating free DNA for the detection of KRAS mutation status in colorectal cancer: A meta-analysis.

  • Wenli Xie‎ et al.
  • Cancer medicine‎
  • 2019‎

KRAS mutations have been reported as a reliable biomarker for epidermal growth factor receptor (EGFR) targeted therapy and are also associated with poor prognosis in colorectal cancer (CRC) patients. However, limitations of detecting KRAS mutations in tissues are obvious. KRAS mutations in the peripheral blood can be detected as an alternative to tissue analysis. The objective of this meta-analysis was to evaluate the diagnostic value of cfDNA (circulating free DNA) compared with tissues and to investigate the prognostic potential of cfDNA KRAS mutations in CRC patients. Searches were performed in PubMed, Embase, and Cochrane Library for published studies. We extracted true-positive (TP), false-positive (FP), false-negative (FN), true-negative (TN) values, survival rate of CRC patients with mutant and wild-type KRAS and calculated pooled sensitivity and specificity, positive/negative likelihood ratios [PLRs/NLRs], diagnostic odds ratios [DORs], and corresponding 95% confidence intervals [95% CIs]. We also generated a summary receiver operating characteristic (SROC) curve to evaluate the overall diagnostic potential. Totally, 31 relevant studies were recruited and used for the meta-analysis on the efficacy of cfDNA testing in detecting KRAS mutations. The pooled sensitivity, specificity, PLR, NLR, and DOR were 0.637 (95% CI: 0.607-0.666), 0.943 (95% CI: 0.930-0.954), 10.024 (95% CI: 6.912-14.535), 0.347 (95% CI: 0.269-0.447), and 37.882 (95% CI: 22.473-63.857), respectively. The area under the SROC curve was 0.9392. Together, the results suggest that detecting KRAS mutations in cfDNA has adequate diagnostic efficacy in terms of specificity. There is a promising role for cfDNA in the detection of KRAS mutations in CRC patients. However, prospective studies with larger patient cohorts are still required before definitive conclusions of the prognostic potential of cfDNA KRAS mutations in CRC patients were drawn.


Repression of Noxa by Bmi1 contributes to deguelin-induced apoptosis in non-small cell lung cancer cells.

  • Wei Li‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2018‎

Deguelin, a natural rotenoid isolated from several plants, has been reported to exert anti-tumour effects in various cancers. However, the molecular mechanism of this regulation remains to be fully elucidated. Here, we found that deguelin inhibited the growth of non-small cell lung cancer (NSCLC) cells both in vitro and in vivo by downregulation of Bmi1 expression. Our data showed that Bmi1 is highly expressed in human NSCLC tissues and cell lines. Knockdown of Bmi1 significantly suppressed NSCLC cell proliferation and colony formation. Deguelin treatment attenuated the binding activity of Bmi1 to the Noxa promoter, thus resulting in Noxa transcription and apoptosis activation. Knockdown of Bmi1 promoted Noxa expression and enhanced deguelin-induced apoptosis, whereas overexpression of Bmi1 down-regulated Noxa protein level and deguelin-induced apoptosis. Overall, our study demonstrated a novel apoptotic mechanism for deguelin to exert its anti-tumour activity in NSCLC cells.


5-FU and ixabepilone modify the microRNA expression profiles in MDA-MB-453 triple-negative breast cancer cells.

  • Yongshan Yao‎ et al.
  • Oncology letters‎
  • 2014‎

This study aimed to discover new potential mechanisms of chemotherapy with drugs used in the treatment of luminal androgen receptor (LAR)-type triple-negative breast cancer (TNBC). We examined the microRNA (miRNA) expression profiles of LAR-type TNBC in vitro, and explored the variation in miRNA expression profiles in cells when treated with the chemotherapy drugs capecitabine and ixabepilone. The present study revealed that the expression levels of the three antitumor miRNAs, miR-122a, miR-145 and miR-205, were significantly elevated in MDA-MB-453 LAR-type TNBC tumor cells treated with 5-fluorouracil together with ixabepilone. By contrast, carcinogenic miR-296 miRNA expression significantly declined, and levels of several other miRNAs such as miR-221, miR-210, miR-21 and miR-10b were also altered. The drugs may exert their effects through the regulation of miRNA expression levels, thereby providing a theoretical basis for clinical implementation of miRNA expression profiles as a diagnostic method for the early diagnosis, classification and prognosis of breast cancer.


Construction of leaky strains and extracellular production of exogenous proteins in recombinant Escherichia coli.

  • Zhao-Yuan Chen‎ et al.
  • Microbial biotechnology‎
  • 2014‎

In this study, a strategy of the construction of leaky strains for the extracellular production of target proteins was exploited, in which the genes mrcA, mrcB, pal and lpp (as a control) from Escherichia coli were knocked out by using single- and/or double-gene deletion methods. Then the recombinant strains for the expression of exogenous target proteins including Trx-hPTH (human parathyroid hormone 1-84 coupled with thioredoxin as a fusion partner) and reteplase were reconstructed to test the secretory efficiency of the leaky strains. Finally, the fermentation experiments of the target proteins from these recombinant leaky strains were carried out in basic media (Modified R media) and complex media (Terrific Broth media) in flasks or fermenters. The results demonstrated that the resultant leaky strains were genetically stable and had a similar growth profile in the complex media as compared with the original strain, and the secretory levels of target proteins into Modified R media from the strains with double-gene deletion (up to 88.9%/mrcA lpp-pth) are higher than the excretory levels from the strains with single-gene deletion (up to 71.1%/lpp-pth) and the host E. coli JM109 (DE3) (near zero). The highest level of extracellular production of Trx-hPTH in fermenters is up to 680 mg l(-1).


Development of a luciferase-based biosensor to assess enterovirus 71 3C protease activity in living cells.

  • Yuan Zhang‎ et al.
  • Scientific reports‎
  • 2017‎

Enterovirus 71 (EV71) is a major pathogen of hand, foot, and mouth disease (HFMD). To date, no antiviral drug has been approved to treat EV71 infection. Due to the essential role that EV71 3 C protease (3Cpro) plays in the viral life cycle, it is generally considered as a highly appealing target for antiviral drug development. In this study, we present a transgene-encoded biosensor that can accurately, sensitively and quantitatively report the proteolytic activity of EV71 3Cpro. This biosensor is based on the catalyzed activity of a pro-interleukin (IL)-1β-enterovirus 3Cpro cleavage site-Gaussia Luciferase (GLuc) fusion protein that we named i-3CS-GLuc. GLuc enzyme is inactive in the fusion protein because of aggregation caused by pro-IL-1β. However, the 3Cpro of EV71 and other enteroviruses, such as coxsackievirus A9 (CVA9), coxsackievirus B3 (CVB3), and poliovirus can recognize and process the canonical enterovirus 3Cpro cleavage site between pro-IL-1β and GLuc, thereby releasing and activating GLuc and resulting in increased luciferase activity. The high sensitivity, ease of use, and applicability as a transgene in cell-based assays of i-3CS-GLuc biosensor make it a powerful tool for studying viral protease proteolytic events in living cells and for achieving high-throughput screening of antiviral agents.


Intelligently targeted drug delivery and enhanced antitumor effect by gelatinase-responsive nanoparticles.

  • Rutian Li‎ et al.
  • PloS one‎
  • 2013‎

The matrix metalloproteinase (MMP) 2/9, also known as collagenases IV and gelatinases A/B, play a key role in cancer invasion and metastasis. However, the clinical trials of the MMP inhibitors (MMPIs) ended up with disappointing results. In this paper, we synthesized a gelatinase-responsive copolymer (mPEG-PCL) by inserting a gelatinase cleavable peptide (PVGLIG) between mPEG and PCL blocks of mPEG-PCL for anticancer drug delivery to make use of MMP2/9 as an intelligent target for drug delivery.


Drug off-target effects predicted using structural analysis in the context of a metabolic network model.

  • Roger L Chang‎ et al.
  • PLoS computational biology‎
  • 2010‎

Recent advances in structural bioinformatics have enabled the prediction of protein-drug off-targets based on their ligand binding sites. Concurrent developments in systems biology allow for prediction of the functional effects of system perturbations using large-scale network models. Integration of these two capabilities provides a framework for evaluating metabolic drug response phenotypes in silico. This combined approach was applied to investigate the hypertensive side effect of the cholesteryl ester transfer protein inhibitor torcetrapib in the context of human renal function. A metabolic kidney model was generated in which to simulate drug treatment. Causal drug off-targets were predicted that have previously been observed to impact renal function in gene-deficient patients and may play a role in the adverse side effects observed in clinical trials. Genetic risk factors for drug treatment were also predicted that correspond to both characterized and unknown renal metabolic disorders as well as cryptic genetic deficiencies that are not expected to exhibit a renal disorder phenotype except under drug treatment. This study represents a novel integration of structural and systems biology and a first step towards computational systems medicine. The methodology introduced herein has important implications for drug development and personalized medicine.


CD274 promotes cell cycle entry of leukemia-initiating cells through JNK/Cyclin D2 signaling.

  • Xia Fang‎ et al.
  • Journal of hematology & oncology‎
  • 2016‎

CD274 (programmed death ligand 1, also known as B7H1) is expressed in both solid tumors and hematologic malignancies and is of critical importance for the escape of tumor cells from immune surveillance by inhibiting T cell function via its receptor, programmed death 1 (PD-1). Increasing evidence indicates that functional monoclonal antibodies of CD274 may potently enhance the antitumor effect in many cancers. However, the role of CD274 in leukemia-initiating cells (LICs) remains largely unknown.


Munc18b Increases Insulin Granule Fusion, Restoring Deficient Insulin Secretion in Type-2 Diabetes Human and Goto-Kakizaki Rat Islets with Improvement in Glucose Homeostasis.

  • Tairan Qin‎ et al.
  • EBioMedicine‎
  • 2017‎

Reduced pancreatic islet levels of Munc18a/SNARE complex proteins have been postulated to contribute to the deficient glucose-stimulated insulin secretion (GSIS) in type-2 diabetes (T2D). Whereas much previous work has purported Munc18a/SNARE complex (Syntaxin-1A/VAMP-2/SNAP25) to be primarily involved in predocked secretory granule (SG) fusion, less is known about newcomer SGs that undergo minimal docking time at the plasma membrane before fusion. Newcomer SG fusion has been postulated to involve a distinct SM/SNARE complex (Munc18b/Syntaxin-3/VAMP8/SNAP25), whose levels we find also reduced in islets of T2D humans and T2D Goto-Kakizaki (GK) rats. Munc18b overexpression by adenovirus infection (Ad-Munc18b), by increasing assembly of Munc18b/SNARE complexes, mediated increased fusion of not only newcomer SGs but also predocked SGs in T2D human and GK rat islets, resulting in rescue of the deficient biphasic GSIS. Infusion of Ad-Munc18b into GK rat pancreas led to sustained improvement in glucose homeostasis. However, Munc18b overexpression in normal islets increased only newcomer SG fusion. Therefore, Munc18b could potentially be deployed in human T2D to rescue the deficient GSIS.


Screening for Potential Active Components of Fangji Huangqi Tang on the Treatment of Nephrotic Syndrome by Using Integrated Metabolomics Based on "Correlations Between Chemical and Metabolic Profiles".

  • Xiao Liu‎ et al.
  • Frontiers in pharmacology‎
  • 2019‎

As for traditional Chinese medicine (TCM) prescription, what puzzled researchers most was how to select proper chemical markers to represent the whole pharmacological action system. In this paper, an integrated metabolomic method was presented for a systematic discovery of potential active components in Fangji Huangqi Tang (FHT), a well-known TCM prescription for nephrotic syndrome treatment, based on "correlations between chemical and metabolic profiles." Firstly, a metabolomics study was carried out to select representative biomarkers of nephrotic syndrome. Then, after drug administration, the dynamic process of serum composition was investigated by the ultra-high performance liquid chromatography coupled with electrospray ionization-quadrupole-time of flight-mass spectrometry (UHPLC-ESI-Q-TOF-MS) technique to detect the prototypes and related metabolites of relative components from FHT. Pearson correlation analysis was finally used to find out the correlations between the endogenous metabolic spectrums and the chemical serum spectrums. As a result, 17 biomarkers for nephrotic syndrome indication were identified, and the main metabolic pathways of their concern included linoleic acid metabolism; cyanoamino acid metabolism; alpha-linolenic acid metabolism; glycine, serine, and threonine metabolism; arachidonic acid metabolism; and glycerophospholipid metabolism. Meanwhile, active components in FHT for nephrotic syndrome treatment were screened out, including (+)-tetrandrine demethylation, fenfangjine G hydrogenation, tetrandrine, N-methylfangchinoline, tetrandrine demethylation, fangchinoline, glycyrrhetic acid, astragaloside II alcohol dehydration, atractylenolide III demethylation + hydrogenation, atractylenolide III demethylation + hydrogenation, and licoricone-N-acetylcysteine conjugation. This study demonstrated a promising way to elucidate the active chemical material basis of TCM prescription.


Rice stripe virus p2 Colocalizes and Interacts with Arabidopsis Cajal Bodies and Its Domains in Plant Cells.

  • Luping Zheng‎ et al.
  • BioMed research international‎
  • 2020‎

p2 of rice stripe virus may translocate from the nucleus to the cytoplasm and recruit nucleolar functions to promote virus systemic movement. Cajal bodies (CBs) are nuclear components associated with the nucleolus, which play a major role in plant virus infection. Coilin, a marker protein of CBs, is essential for CB formation and function. Coilin contains three domains, the N-terminal, the center, and the C-terminal fragments. Using yeast two-hybrid, colocalization, and bimolecular fluorescence complementation (BiFC) approaches, we show that p2 interacts with the full-length of Arabidopsis thaliana coilin (Atcoilin), the center and C-terminal domain of Atcoilin in the nucleus. Moreover, the N-terminal is indispensable for Atcoilin to interact with Cajal bodies.


Tumor-Derived Exosomal miRNAs as Diagnostic Biomarkers in Non-Small Cell Lung Cancer.

  • Zhijun Zhang‎ et al.
  • Frontiers in oncology‎
  • 2020‎

Delayed diagnosis is the main obstacle to improve prognosis of non-small cell lung cancer (NSCLC). Novel biomarkers for the diagnosis of NSCLC are urgently needed. This study aimed to identify the specific exosomal miRNAs with diagnostic and prognostic potential in NSCLC patients.


Circular RNA circLMO7 acts as a microRNA-30a-3p sponge to promote gastric cancer progression via the WNT2/β-catenin pathway.

  • Jiacheng Cao‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2021‎

Gastric cancer (GC) is one of the most common malignant tumors worldwide. Currently, the overall survival rate of GC is still unsatisfactory despite progress in diagnosis and treatment. Therefore, studying the molecular mechanisms involved in GC is vital for diagnosis and treatment. CircRNAs, a type of noncoding RNA, have been proven to act as miRNA sponges that can widely regulate various cancers. By this mechanism, circRNA can regulate tumors at the genetic level by releasing miRNA from inhibiting its target genes. The WNT2/β-Catenin regulatory pathway is one of the canonical signaling pathways in tumors. It can not only promote the development of tumors but also provide energy for tumor growth through cell metabolism (such as glutamine metabolism).


Plasma exosomal tRNA-derived fragments as diagnostic biomarkers in non-small cell lung cancer.

  • Baibing Zheng‎ et al.
  • Frontiers in oncology‎
  • 2022‎

tRNA derived small RNAs (tRFs) have recently received extensive attention; however, the effects of tRFs in exosome as biomarkers has been less studied. The objective of this study was to validate novel diagnostic exosomal tRFs with sensitivity and specificity for non-small cell lung cancer (NSCLC).


MKI67 as a potential diagnostic biomarker in pulmonary hypertension.

  • Huiling Zhou‎ et al.
  • Frontiers in pediatrics‎
  • 2022‎

Right heart failure results from advanced pulmonary hypertension (PH) and has a poor prognosis. There are few available treatments for right heart failure. Pulmonary artery remodeling, including changes in pulmonary artery endothelial cells to endothelial-mesenchymal cells, and aberrant fibroblast and pulmonary artery smooth muscle cell (PASMC) proliferation, are characteristics of the pathophysiological process of PH. As a result, the clinical situation requires novel PH diagnostic and treatment targets.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: