Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 436 papers

High-density lipoprotein inhibits mechanical stress-induced cardiomyocyte autophagy and cardiac hypertrophy through angiotensin II type 1 receptor-mediated PI3K/Akt pathway.

  • Li Lin‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2015‎

Mechanical stress triggers cardiac hypertrophy and autophagy through an angiotensin II (Ang II) type 1 (AT1) receptor-dependent mechanism. Low level of high density lipoprotein (HDL) is an independent risk factor for cardiac hypertrophy. This study was designed to evaluate the effect of HDL on mechanical stress-induced cardiac hypertrophy and autophagy. A 48-hr mechanical stretch and a 4-week transverse aortic constriction were employed to induce cardiomyocyte hypertrophy in vitro and in vivo, respectively, prior to the assessment of myocardial autophagy using LC3b-II and beclin-1. Our results indicated that HDL significantly reduced mechanical stretch-induced rise in autophagy as demonstrated by LC3b-II and beclin-1. In addition, mechanical stress up-regulated AT1 receptor expression in both cultured cardiomyocytes and in mouse hearts, whereas HDL significantly suppressed the AT1 receptor. Furthermore, the role of Akt phosphorylation in HDL-mediated action was assessed using MK-2206, a selective inhibitor for Akt phosphorylation. Our data further revealed that MK-2206 mitigated HDL-induced beneficial responses on cardiac remodelling and autophagy. Taken together, our data revealed that HDL inhibited mechanical stress-induced cardiac hypertrophy and autophagy through downregulation of AT1 receptor, and HDL ameliorated cardiac hypertrophy and autophagy via Akt-dependent mechanism.


Abortive infection of snakehead fish vesiculovirus in ZF4 cells was associated with the RLRs pathway activation by viral replicative intermediates.

  • Wenwen Wang‎ et al.
  • International journal of molecular sciences‎
  • 2015‎

Snakehead fish vesiculovirus (SHVV) is a negative strand RNA virus which can cause great economic losses in fish culture. To facilitate the study of SHVV-host interactions, the susceptibility of zebrafish embryonic fibroblast cell line (ZF4) to the SHVV was investigated in this report. The results showed that high amount of viral mRNAs and cRNAs were detected at the 3 h post-infection. However, the expressions of the viral mRNAs and cRNA were decreased dramatically after 6 h post-infection. In addition, the expressions of interferon (IFN) and interferon-induced GTP-binding protein Mx were all up regulated significantly at the late stage of the infection. Meanwhile, the expressions of Retinoic acid-inducible gene I (RIG-I) and Melanoma differentiation-associated gene 5 (MDA5) were also all up-regulated significantly during the infection. Two isoforms of DrLGP2 from zebrafish were also cloned and analyzed. Interestingly, the expression of DrLGP2a but not DrLGP2b was significantly up-regulated at both mRNA and protein levels, indicating that the two DrLGP2 isoforms might play different roles during the SHVV infection. Transfection experiment showed that viral replicative intermediates were required for the activation of IFN-α expression. Taken together, the abortive infection of SHVV in ZF4 cells was associated with the activation of RLRs pathway, which was activated by viral replicative intermediates.


Ser341Pro MYOC gene mutation in a family with primary open-angle glaucoma.

  • Fengyun Wang‎ et al.
  • International journal of molecular medicine‎
  • 2015‎

Glaucoma is known to induce visual impairment and blindness. The aim of the present study was to determine the clinical and genetic findings of a family with primary open-angle glaucoma (POAG). A family diagnosed with glaucoma was examined clinically and followed up for five years. Genomic DNA was extracted from the venous blood of 12 family members, and of 100 healthy individuals. The mode of inheritance was determined by the pedigree analysis. The third exon and its flanking introns of myocilin (MYOC) were amplified, and quantitative polymerase chain reaction (qPCR) products were sequenced. The restriction fragment length polymorphism analysis was performed on samples from the 12 family members and 100 normal controls. The predicted effects of the detected variants on the secondary structure of the MYOC protein were analyzed by the Garnier-Osguthorpe-Robson method. In this family, three members were diagnosed with POAG, and one member with ocular hypertension. The mode of inheritance of the family was autosomal dominant with six members being genetically affected. The heterozygous mutation was identified in the third exon of MYOC that revealed a T → C transition at position 1021 (p.S341P), which switched serine (Ser) to proline (Pro). This is a missense mutation eliminating a CviKI-1 restriction site that segregated the affected members. Secondary structure prediction of p.S341P suggested that the MYOC protein was misfolded. Ser341Pro MYOC mutation was detected in the family with POAG. The clinical and genetic characteristics of this mutation require further investigation. The mutation spectrum of MYOC may be expanded for a better diagnosis and treatment for POAG patients.


Replication the association of 2q32.2-q32.3 and 14q32.11 with hepatocellular carcinoma.

  • Wei Chen‎ et al.
  • Gene‎
  • 2015‎

Hepatocellular carcinoma (HCC) is a malignant tumor. The morbidity and mortality of HCC tend to ascend and become a serious threat to the population health. Genetic studies of HCC have identified several susceptibility loci of HCC. In this study, we aim to replicate the association of these loci in our samples from Chinese population and further investigate the genetic interaction. We selected 16 SNPs within 1p36.22, 2q32.2-q32.3, 3p21.33, 8p12, 14q32.11 and 21q21.3 and genotyped in 507 HCC patients and 3014 controls by using Sequenom MassARRAY system. Association analyses were performed by using PLINK 1.07. We observed that the STAT4 (2q32.2-q32.3) at rs7574865 (P=1.17×10(-3), OR=0.79) and EFCAB11 (14q32.11) at rs8013403 (P=1.54×10(-3), OR=0.80) were significantly associated with HCC in this study. In 3p21.33, genetic variant rs6795737 within GLB1 was also observed with suggestive evidence (P=9.98×10(-3), OR=0.84). In the interaction analysis, the pair of associated SNPs (rs7574865 within STAT4, rs8013403 within EFCAB11) generated evidence for interaction (P=4.10×10(-3)). In summary, our work first reported the association of 14q32.11 (EFCAB11) with HCC in Chinese Han population and revealed the genetic interaction between STAT4 (2q32.2-q32.3) and EFCAB11 (14q32.11) in HCC.


Expression of Tau40 induces activation of cultured rat microglial cells.

  • Lu Wang‎ et al.
  • PloS one‎
  • 2013‎

Accumulation of microtubule-associated protein tau has been observed in the brain of aging and tauopathies. Tau was observed in microglia, but its role is not illustrated. By immunofluorescence staining and the fractal dimension value assay in the present study, we observed that microglia were activated in the brains of rats and mice during aging, simultaneously, the immunoreactivities of total tau and the phosphorylated tau were significantly enhanced in the activated microglia. Furtherly by transient transfection of tau40 (human 2N/4R tau) into the cultured rat microglia, we demonstrated that expression of tau40 increased the level of Iba1, indicating activation of microglia. Moreover, expression of tau40 significantly enhanced the membranous localization of the phosphorylated tau at Ser396 in microglia possibly by a mechanism involving protein phosphatase 2A, extracellular signal-regulated kinase and glycogen synthase kinase-3β. It was also found that expression of tau40 promoted microglial migration and phagocytosis, but not proliferation. And we observed increased secretion of several cytokines, including interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor-α and nitric oxide after the expression of tau40. These data suggest a novel role of human 2N/4R tau in microglial activation.


Environmental enrichment modulates 5-hydroxymethylcytosine dynamics in hippocampus.

  • Hasan Irier‎ et al.
  • Genomics‎
  • 2014‎

Gene-environment interactions mediated at the epigenetic level may provide an initial step in delivering an appropriate response to environmental changes. 5-Hydroxymethylcytosine (5hmC), a DNA base derived from 5-methylcytosine (5mC), accounts for ~40% of modified cytosine in the brain and has been implicated in DNA methylation-related plasticity. To identify the role of 5hmC in gene-environment interactions, we exposed both young (6-week-old) and aged (18-month-old) mice to both an enriched environment and a standard environment. Exposure to EE significantly improves learning and memory in aged mice and reduces 5hmC abundance in mouse hippocampus. Furthermore, we mapped the genome-wide distribution of 5hmC and found that the alteration of 5hmC modification occurred mainly at gene bodies. In particular, genes involved in axon guidance are enriched among the genes with altered 5hmC modification. These results together suggest that environmental enrichment could modulate the dynamics of 5hmC in hippocampus, which could potentially contribute to improved learning and memory in aged animals.


Profilings of MicroRNAs in the Liver of Common Carp (Cyprinus carpio) Infected with Flavobacterium columnare.

  • Lijuan Zhao‎ et al.
  • International journal of molecular sciences‎
  • 2016‎

MicroRNAs (miRNAs) play important roles in regulation of many biological processes in eukaryotes, including pathogen infection and host interactions. Flavobacterium columnare (FC) infection can cause great economic loss of common carp (Cyprinus carpio) which is one of the most important cultured fish in the world. However, miRNAs in response to FC infection in common carp has not been characterized. To identify specific miRNAs involved in common carp infected with FC, we performed microRNA sequencing using livers of common carp infected with and without FC. A total of 698 miRNAs were identified, including 142 which were identified and deposited in the miRbase database (Available online: http://www.mirbase.org/) and 556 had only predicted miRNAs. Among the deposited miRNAs, eight miRNAs were first identified in common carp. Thirty of the 698 miRNAs were differentially expressed miRNAs (DIE-miRNAs) between the FC infected and control samples. From the DIE-miRNAs, seven were selected randomly and their expression profiles were confirmed to be consistent with the microRNA sequencing results using RT-PCR and qRT-PCR. In addition, a total of 27,363 target genes of the 30 DIE-miRNAs were predicted. The target genes were enriched in five Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including focal adhesion, extracellular matrix (ECM)-receptor interaction, erythroblastic leukemia viral oncogene homolog (ErbB) signaling pathway, regulation of actin cytoskeleton, and adherent junction. The miRNA expression profile of the liver of common carp infected with FC will pave the way for the development of effective strategies to fight against FC infection.


Mouse RAGE Variant 4 Is a Dominant Membrane Receptor that Does Not Shed to Generate Soluble RAGE.

  • Yunqian Peng‎ et al.
  • PloS one‎
  • 2016‎

The receptor for advanced glycation end products (RAGE) is a multi-ligand, immunoglobulin-like receptor that has been implicated in aging-associated diseases. Recent studies have demonstrated that both human and murine Ager genes undergo extensive alternative splicing that generates multiple putative transcripts encoding different receptor isoforms. Except for the soluble isoform (esRAGE), the majority of putative RAGE isoforms remain unstudied. Profiling of murine Ager transcripts showed that variant transcript 4 (mRAGE_v4), the second most abundant transcript in lungs and multiple other tissues, encodes a receptor that lacks nine residues located within the C2 extracellular section close to the trans-membrane domain. We therefore characterized mRAGEV4 isoreceptor in comparison with the full-length mRAGE (mRAGEFL). Although differing in only nine residues, mRAGEFL and mRAGEV4 display very different cellular behaviors. While mRAGEFL undergoes constitutive, extensive shedding in the cell to generate sRAGE, mRAGEV4 hardly sheds. In addition, we found that while mRAGEFL can localize to both the plasma membrane and the endosome, mRAGEV4 is exclusively localized to the plasma membrane. These very different cellular localization patterns suggest that, in addition to their roles in sRAGE production, mRAGEFL and mRAGEV4 may play distinct, spatiotemporal roles in signaling and innate immune responses. Compared to mice, humans do not have the v4 transcript. Although hRAGE, like mRAGEFL, also localizes to the plasma membrane and the endosome, its rate of constitutive shedding is significantly lower. These observations provide valuable information regarding RAGE biology, and serve as a reference by which to create mouse models relating to human diseases.


What Predicts Adolescent Delinquent Behavior in Hong Kong? A Longitudinal Study of Personal and Family Factors.

  • Daniel T L Shek‎ et al.
  • Social indicators research‎
  • 2016‎

Using four waves of data from Secondary 1 to Secondary 4 (N = 3328 students at Wave 1), this study examined the development of delinquent behavior and its relationships with economic disadvantage, family non-intactness, family quality of life (i.e., family functioning) and personal well-being (i.e., positive youth development) among Hong Kong adolescents. Individual growth curve models revealed that delinquent behavior increased during this period, and adolescents living in non-intact families (vs. intact families) reported higher initial levels of delinquent behavior while those living in poor families (vs. non-poor families) showed a greater increase in delinquent behavior. In addition, with the demographic factors controlled, the initial levels of family quality of life and personal well-being were negatively associated with the initial level of delinquent behavior, but positively associated with the growth rate of delinquent behavior. Regression analyses showed that family quality of life and personal well-being were related to the overall delinquent behavior concurrently at Wave 4. However, Wave 1 family quality of life and personal well-being did not predict Wave 4 delinquent behavior with the initial level of delinquent behavior controlled. Lastly, we discussed the role of economic disadvantage and family non-intactness as risk factors and family functioning and positive youth development as protective well-being factors in the development of adolescent well-being indexed by delinquent behavior.


XB130 promotes proliferation and invasion of gastric cancer cells.

  • Min Shi‎ et al.
  • Journal of translational medicine‎
  • 2014‎

XB130 has been reported to be expressed by various types of cells such as thyroid cancer and esophageal cancer cells, and it promotes the proliferation and invasion of thyroid cancer cells. Our previous study demonstrated that XB130 is also expressed in gastric cancer (GC), and that its expression is associated with the prognosis, but the role of XB130 in GC has not been well characterized.


Cell-cycle control of developmentally regulated transcription factors accounts for heterogeneity in human pluripotent cells.

  • Amar M Singh‎ et al.
  • Stem cell reports‎
  • 2013‎

Heterogeneity within pluripotent stem cell (PSC) populations is indicative of dynamic changes that occur when cells drift between different states. Although the role of metastability in PSCs is unclear, it appears to reflect heterogeneity in cell signaling. Using the Fucci cell-cycle indicator system, we show that elevated expression of developmental regulators in G1 is a major determinant of heterogeneity in human embryonic stem cells. Although signaling pathways remain active throughout the cell cycle, their contribution to heterogeneous gene expression is restricted to G1. Surprisingly, we identify dramatic changes in the levels of global 5-hydroxymethylcytosine, an unanticipated source of epigenetic heterogeneity that is tightly linked to cell-cycle progression and the expression of developmental regulators. When we evaluated gene expression in differentiating cells, we found that cell-cycle regulation of developmental regulators was maintained during lineage specification. Cell-cycle regulation of developmentally regulated transcription factors is therefore an inherent feature of the mechanisms underpinning differentiation.


Golgin-84-associated Golgi fragmentation triggers tau hyperphosphorylation by activation of cyclin-dependent kinase-5 and extracellular signal-regulated kinase.

  • Qian Jiang‎ et al.
  • Neurobiology of aging‎
  • 2014‎

Tau hyperphosphorylation is a critical event in Alzheimer's disease, in which the neuronal Golgi fragmentation occurs earlier than tau hyperphosphorylation. However, the intrinsic link between Golgi impairment and tau pathology is missing. By electron microscopy and western blotting, we observed in the present study that the neuronal Golgi fragmentation was increased age-dependently with a correlated tau hyperphosphorylation in the brains of C57BL/6 mice aged from 4 to 16 months. Simultaneously, golgin-84 and Golgi reassembly stacking protein 65, 2 important Golgi matrix proteins, were decreased in the brains of elder mice. Further studies in HEK293/tau cells showed that Golgi-disturbing agents, brefeldin A and nocodazole induced tau hyperphosphorylation. Knockdown of golgin-84, not Golgi reassembly stacking protein 65, by small interfering RNA was sufficient to induce tau hyperphosphorylation, while over-expressing golgin-84 arrested the brefeldin A-induced Golgi fragmentation and tau hyperphosphorylation. Finally, we demonstrated that cyclin-dependent kinase-5 and extracellular signal-regulated kinase were activated after golgin-84 knockdown, and simultaneous inhibition of these kinases abolished the golgin-84 deficit-induced tau hyperphosphorylation. These data suggest Golgi fragmentation could be an upstream event triggering tau hyperphosphorylation through golgin-84 deficit-induced activation of cyclin-dependent kinase-5 and extracellular signal-regulated kinase.


Conserved transcriptional regulatory programs underlying rice and barley germination.

  • Li Lin‎ et al.
  • PloS one‎
  • 2014‎

Germination is a biological process important to plant development and agricultural production. Barley and rice diverged 50 million years ago, but share a similar germination process. To gain insight into the conservation of their underlying gene regulatory programs, we compared transcriptomes of barley and rice at start, middle and end points of germination, and revealed that germination regulated barley and rice genes (BRs) diverged significantly in expression patterns and/or protein sequences. However, BRs with higher protein sequence similarity tended to have more conserved expression patterns. We identified and characterized 316 sets of conserved barley and rice genes (cBRs) with high similarity in both protein sequences and expression patterns, and provided a comprehensive depiction of the transcriptional regulatory program conserved in barley and rice germination at gene, pathway and systems levels. The cBRs encoded proteins involved in a variety of biological pathways and had a wide range of expression patterns. The cBRs encoding key regulatory components in signaling pathways often had diverse expression patterns. Early germination up-regulation of cell wall metabolic pathway and peroxidases, and late germination up-regulation of chromatin structure and remodeling pathways were conserved in both barley and rice. Protein sequence and expression pattern of a gene change quickly if it is not subjected to a functional constraint. Preserving germination-regulated expression patterns and protein sequences of those cBRs for 50 million years strongly suggests that the cBRs are functionally significant and equivalent in germination, and contribute to the ancient characteristics of germination preserved in barley and rice. The functional significance and equivalence of the cBR genes predicted here can serve as a foundation to further characterize their biological functions and facilitate bridging rice and barley germination research with greater confidence.


Chlorophyll catalyse the photo-transformation of carcinogenic benzo[a]pyrene in water.

  • Lijuan Luo‎ et al.
  • Scientific reports‎
  • 2015‎

Algal blooms cause great damage to water quality and aquaculture. However, this study showed that dead algal cells and chlorophyll could accelerate the photo-transformation of benzo[a]pyrene (BaP), a ubiquitous and persistent pollutant with potently mutagenic and carcinogenic toxicities, under visible light irradiation. Chlorophyll was found to be the major active substance in dead algal cells, and generated a high level of singlet oxygen to catalyse the photo-transformation of BaP. According to various BaP metabolites formed, the degradation mechanism was proposed as that chlorophyll in dead algal cells photo-oxidized BaP to quinones via photocatalytic generation of singlet oxygen. The results provided a good insight into the role of chlorophyll in the photo-transformation of organic contaminants and could be a possible remediation strategy of organic pollutants in natural environment.


LRP6 acts as a scaffold protein in cardiac gap junction assembly.

  • Jun Li‎ et al.
  • Nature communications‎
  • 2016‎

Low-density lipoprotein receptor-related protein 6 (LRP6) is a Wnt co-receptor in the canonical Wnt/β-catenin signalling. Here, we report the scaffold function of LRP6 in gap junction formation of cardiomyocytes. Cardiac LRP6 is spatially restricted to intercalated discs and binds to gap junction protein connexin 43 (Cx43). A deficiency in LRP6 disrupts Cx43 gap junction formation and thereby impairs the cell-to-cell coupling, which is independent of Wnt/β-catenin signalling. The defect in Cx43 gap junction resulting from LRP6 reduction is attributable to the defective traffic of de novo Cx43 proteins from the endoplasmic reticulum to the Golgi apparatus, leading to the lysosomal degradation of Cx43 proteins. Accordingly, the hearts of conditional cardiac-specific Lrp6-knockout mice consistently exhibit overt reduction of Cx43 gap junction plaques without any abnormality in Wnt signalling and are predisposed to lethal arrhythmias. These findings uncover a distinct role of LRP6 as a platform for intracellular protein trafficking.


The rise of angiosperm-dominated herbaceous floras: Insights from Ranunculaceae.

  • Wei Wang‎ et al.
  • Scientific reports‎
  • 2016‎

The rise of angiosperms has been regarded as a trigger for the Cretaceous revolution of terrestrial ecosystems. However, the timeframe of the rise angiosperm-dominated herbaceous floras (ADHFs) is lacking. Here, we used the buttercup family (Ranunculaceae) as a proxy to provide insights into the rise of ADHFs. An integration of phylogenetic, molecular dating, ancestral state inferring, and diversification analytical methods was used to infer the early evolutionary history of Ranunculaceae. We found that Ranunculaceae became differentiated in forests between about 108-90 Ma. Diversification rates markedly elevated during the Campanian, mainly resulted from the rapid divergence of the non-forest lineages, but did not change across the Cretaceous-Paleogene boundary. Our data for Ranunculaceae indicate that forest-dwelling ADHFs may have appeared almost simultaneously with angiosperm-dominated forests during the mid-Cretaceous, whereas non-forest ADHFs arose later, by the end of the Cretaceous terrestrial revolution. Furthermore, ADHFs were relatively unaffected by the Cretaceous-Paleogene mass extinction.


Brain-Region-Specific Organoids Using Mini-bioreactors for Modeling ZIKV Exposure.

  • Xuyu Qian‎ et al.
  • Cell‎
  • 2016‎

Cerebral organoids, three-dimensional cultures that model organogenesis, provide a new platform to investigate human brain development. High cost, variability, and tissue heterogeneity limit their broad applications. Here, we developed a miniaturized spinning bioreactor (SpinΩ) to generate forebrain-specific organoids from human iPSCs. These organoids recapitulate key features of human cortical development, including progenitor zone organization, neurogenesis, gene expression, and, notably, a distinct human-specific outer radial glia cell layer. We also developed protocols for midbrain and hypothalamic organoids. Finally, we employed the forebrain organoid platform to model Zika virus (ZIKV) exposure. Quantitative analyses revealed preferential, productive infection of neural progenitors with either African or Asian ZIKV strains. ZIKV infection leads to increased cell death and reduced proliferation, resulting in decreased neuronal cell-layer volume resembling microcephaly. Together, our brain-region-specific organoids and SpinΩ provide an accessible and versatile platform for modeling human brain development and disease and for compound testing, including potential ZIKV antiviral drugs.


Disulfide bonds within the C2 domain of RAGE play key roles in its dimerization and biogenesis.

  • Wen Wei‎ et al.
  • PloS one‎
  • 2012‎

The receptor for advanced glycation end products (RAGE) on the cell surface transmits inflammatory signals. A member of the immunoglobulin superfamily, RAGE possesses the V, C1, and C2 ectodomains that collectively constitute the receptor's extracellular structure. However, the molecular mechanism of RAGE biogenesis remains unclear, impeding efforts to control RAGE signaling through cellular regulation. METHODOLOGY AND RESULT: We used co-immunoprecipitation and crossing-linking to study RAGE oligomerization and found that RAGE forms dimer-based oligomers. Via non-reducing SDS-polyacrylamide gel electrophoresis and mutagenesis, we found that cysteines 259 and 301 within the C2 domain form intermolecular disulfide bonds. Using a modified tripartite split GFP complementation strategy and confocal microscopy, we also found that RAGE dimerization occurs in the endoplasmic reticulum (ER), and that RAGE mutant molecules without the double disulfide bridges are unstable, and are subjected to the ER-associated degradation.


Application of RNA-Seq transcriptome analysis: CD151 is an Invasion/Migration target in all stages of epithelial ovarian cancer.

  • Rebecca A Mosig‎ et al.
  • Journal of ovarian research‎
  • 2012‎

RNA-Seq allows a theoretically unbiased analysis of both genome-wide transcription levels and mutation status of a tumor. Using this technique we sought to identify novel candidate therapeutic targets expressed in epithelial ovarian cancer (EOC).


Lycorine inhibits glioblastoma multiforme growth through EGFR suppression.

  • Jia Shen‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2018‎

Lycorine has been revealed to inhibit the development of many kinds of malignant tumors, including glioblastoma multiforme (GBM). Although compelling evidences demonstrated Lycorine's inhibition on cancers through some peripheral mechanism, in-depth mechanism studies of Lycotine's anti-GBM effects still call for further exploration. Epidermal Growth Factor Receptor (EGFR) gene amplification and mutations are the most common oncogenic events in GBM. Targeting EGFR by small molecular inhibitors is a rational strategy for GBM treatment.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: