Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 205 papers

Mismatch and base excision repair proficiency in murine embryonic stem cells.

  • Elisia D Tichy‎ et al.
  • DNA repair‎
  • 2011‎

Accumulation of mutations in embryonic stem (ES) cells would be detrimental to an embryo derived from these cells, and would adversely affect multiple organ systems and tissue types. ES cells have evolved multiple mechanisms to preserve genomic integrity that extend beyond those found in differentiated cell types. The present study queried whether mismatch repair (MMR) and base-excision repair (BER) may play a role in the maintenance of murine ES cell genomes. The MMR proteins Msh2 and Msh6 are highly elevated in mouse ES cells compared with mouse embryo fibroblasts (MEFs), as are Pms2 and Mlh1, albeit to a lesser extent. Cells transfected with an MMR reporter plasmid showed that MMR repair capacity is low in MEFs, but highly active in wildtype ES cells. As expected, an ES cell line defective in MMR was several-fold less effective in repair level than wildtype ES cells. Like proteins that participate in MMR, the level of proteins involved in BER was elevated in ES cells compared with MEFs. When BER activity was examined biochemically using a uracil-containing oligonucleotide template, repair activity was higher in ES cells compared with MEFs. The data are consistent with the suggestion that ES cells have multiple mechanisms, including highly active MMR and BER that preserve genetic integrity and minimize the accumulation of mutations.


Placental glycogen stores are increased in mice with H19 null mutations but not in those with insulin or IGF type 1 receptor mutations.

  • Diego R Esquiliano‎ et al.
  • Placenta‎
  • 2009‎

The function of glycogen in the placenta remains controversial. Whether it is used as a source of fuel for placental consumption or by the fetus in times of need has yet to be determined. Two imprinted genes, insulin-like growth factor 2 (Igf2) and H19 are highly expressed in the placenta. We have previously demonstrated that mice with Igf2 deficiency have lower levels of placental glycogen. In this study, we used mice with targeted disruption of the H19 gene (H19(-/-)) to determine the importance of Igf2 over-expression in placental growth and glycogen stores. In addition, since Igf2 mediates most of its functions by signaling through the insulin and/or IGF Type 1 receptors, we determined whether gene deletions to these receptors could affect placental glycogen stores. Our data demonstrate that placentas from H19(-/-) mice are heavier, have higher number of glycogen cells, and contain larger glycogen concentrations than those of H19(+/+) mice. No differences in GSK-3, ERK, or total Akt expression or phosphorylation were found between genotypes; however, Akt1 protein expression levels were significantly increased in H19(-/-) placentas. Results obtained from insulin receptor or IGF Type 1 receptor mutant mice did not show differences in placental glycogen content compared to their wild-type littermates, supporting the notion of a specific placental Igf2 receptor. Taken together, these results support a role for Igf2 and Akt1, but not the insulin nor the IGF Type 1 receptors, in the regulation of placental growth and glycogen metabolism.


Genetic variations in SEC16B, MC4R, MAP2K5 and KCTD15 were associated with childhood obesity and interacted with dietary behaviors in Chinese school-age population.

  • Duo Lv‎ et al.
  • Gene‎
  • 2015‎

Both genetic predisposition and lifestyle factors are associated with the risk for obesity. Multiple obesity loci have been identified using genome-wide association studies mainly in European populations. The aims of this study were to examine the associations of these loci with obesity and gene×dietary behavior interactions among Chinese children and adolescents. Nineteen candidate SNPs were genotyped using Sequenom technology in the Chinese children (N=2977, 853 obese and 2124 controls, aged 7-17). Dietary behaviors were assessed using self-administered questionnaires. After adjusting for age, sex and multiple testing, MC4R rs17782313, SEC16B rs543874, MAP2K5 rs2241423 and KCTD15 rs11084753 were associated with obesity and obesity-related traits (all P<0.005), with odd ratios ranging from 1.22 to 2.15. Dose-response association was significant between genetic risk score, which was calculated by summing the risk alleles, and the risk of obesity (P<0.001). Multiplicative interaction was found between rs543874 and salt preference on obesity with an OR of 4.40 (95% CI, 1.12-17.30). Additive interactions with salt preference were found in rs17782313 and rs11084753. Our findings indicated that rs17782313, rs543874, rs2241423 and rs11084753 were associated with the risk for children obesity in China, and interaction of genetic variants with diet behaviors on obesity.


Proteomic features predict seroreactivity against leptospiral antigens in leptospirosis patients.

  • Carolina Lessa-Aquino‎ et al.
  • Journal of proteome research‎
  • 2015‎

With increasing efficiency, accuracy, and speed we can access complete genome sequences from thousands of infectious microorganisms; however, the ability to predict antigenic targets of the immune system based on amino acid sequence alone is still needed. Here we use a Leptospira interrogans microarray expressing 91% (3359) of all leptospiral predicted ORFs (3667) and make an empirical accounting of all antibody reactive antigens recognized in sera from naturally infected humans; 191 antigens elicited an IgM or IgG response, representing 5% of the whole proteome. We classified the reactive antigens into 26 annotated COGs (clusters of orthologous groups), 26 JCVI Mainrole annotations, and 11 computationally predicted proteomic features. Altogether, 14 significantly enriched categories were identified, which are associated with immune recognition including mass spectrometry evidence of in vitro expression and in vivo mRNA up-regulation. Together, this group of 14 enriched categories accounts for just 25% of the leptospiral proteome but contains 50% of the immunoreactive antigens. These findings are consistent with our previous studies of other Gram-negative bacteria. This genome-wide approach provides an empirical basis to predict and classify antibody reactive antigens based on structural, physical-chemical, and functional proteomic features and a framework for understanding the breadth and specificity of the immune response to L. interrogans.


Photochemical tyrosine oxidation in the structurally well-defined α3Y protein: proton-coupled electron transfer and a long-lived tyrosine radical.

  • Starla D Glover‎ et al.
  • Journal of the American Chemical Society‎
  • 2014‎

Tyrosine oxidation-reduction involves proton-coupled electron transfer (PCET) and a reactive radical state. These properties are effectively controlled in enzymes that use tyrosine as a high-potential, one-electron redox cofactor. The α3Y model protein contains Y32, which can be reversibly oxidized and reduced in voltammetry measurements. Structural and kinetic properties of α3Y are presented. A solution NMR structural analysis reveals that Y32 is the most deeply buried residue in α3Y. Time-resolved spectroscopy using a soluble flash-quench generated [Ru(2,2'-bipyridine)3](3+) oxidant provides high-quality Y32-O• absorption spectra. The rate constant of Y32 oxidation (kPCET) is pH dependent: 1.4 × 10(4) M(-1) s(-1) (pH 5.5), 1.8 × 10(5) M(-1) s(-1) (pH 8.5), 5.4 × 10(3) M(-1) s(-1) (pD 5.5), and 4.0 × 10(4) M(-1) s(-1) (pD 8.5). k(H)/k(D) of Y32 oxidation is 2.5 ± 0.5 and 4.5 ± 0.9 at pH(D) 5.5 and 8.5, respectively. These pH and isotope characteristics suggest a concerted or stepwise, proton-first Y32 oxidation mechanism. The photochemical yield of Y32-O• is 28-58% versus the concentration of [Ru(2,2'-bipyridine)3](3+). Y32-O• decays slowly, t1/2 in the range of 2-10 s, at both pH 5.5 and 8.5, via radical-radical dimerization as shown by second-order kinetics and fluorescence data. The high stability of Y32-O• is discussed relative to the structural properties of the Y32 site. Finally, the static α3Y NMR structure cannot explain (i) how the phenolic proton released upon oxidation is removed or (ii) how two Y32-O• come together to form dityrosine. These observations suggest that the dynamic properties of the protein ensemble may play an essential role in controlling the PCET and radical decay characteristics of α3Y.


Temporal Trends in Care and Outcomes of Patients Receiving Fibrinolytic Therapy Compared to Primary Percutaneous Coronary Intervention: Insights From the Get With The Guidelines Coronary Artery Disease (GWTG-CAD) Registry.

  • Ravi S Hira‎ et al.
  • Journal of the American Heart Association‎
  • 2016‎

Timely reperfusion after ST-elevation myocardial infarction (STEMI) improves survival. Guidelines recommend primary percutaneous coronary intervention (PPCI) within 90 minutes of arrival at a PCI-capable hospital. The alternative is fibrinolysis within 30 minutes for those in those for whom timely transfer to a PCI-capable hospital is not feasible.


MiR-384 inhibits human colorectal cancer metastasis by targeting KRAS and CDC42.

  • Yong-Xia Wang‎ et al.
  • Oncotarget‎
  • 2016‎

Colorectal cancer (CRC) is the third most common cancer worldwide. Metastatic progression is a primary factor contributing to lethality of CRC patients. However, the molecular mechanisms forming early local invasion and distant metastatic colonies are still unclear and the present therapeutic approaches for CRC are unsatisfactory. Therefore, novel therapies targeting metastatic invasion that could prevent tumor spreading and recurrence are urgently needed. Our study showed that the decrease of miR-384 was found in 83.0% (83/100) CRC patients. And low-leveled expression of miR-384 was closely correlated with the invasive depth, lymph node and distant metastasis of CRC. Overexpression of miR-384 could inhibit the invasive and migrating abilities of CRC cells in vitro and the metastatic potential in vivo. Luciferase assays showed that miR-384 repressed the expression of Kirsten Ras (KRAS) and Cell division cycle 42 (CDC42) by directly targeting their 3'-untranslated regions. There is functional and mechanistic relationship between miRNA-384 and KRAS, CDC42 in the invasion and metastasis of CRC. And our findings suggest that miR-384could be a potent therapeutic target for CRC. Restoration of miR-384 expression might provide novel therapeutic approach to the reduction of CRC metastasis.


FoxO3a confers cetuximab resistance in RAS wild-type metastatic colorectal cancer through c-Myc.

  • Yiyi Yu‎ et al.
  • Oncotarget‎
  • 2016‎

Resistance to epidermal growth factor receptor (EGFR) targeted monoclonal antibody therapy represents a clinical challenge in patients suffered from RAS wild-type (WT) metastatic colorectal cancer (mCRC). However, the molecular mechanisms and key factors conferring this resistance are largely unknown. Forkhead transcription factors of the O class 3a (FoxO3a), an important regulator of cell survival, has been reported with dual functions in tumor recently. In this study, we found that FoxO3a was highly expressed in cetuximab resistant CRC tissues compared with cetuximab sensitive tissues. We therefore further analyzed its function in induced cetuximab resistant RAS-WT CRC cells (Caco2-CR) and intrinsic resistant cells with BRAF mutation (HT29). We found that FoxO3a was significantly up-regulated in Caco2-CR as well as in cetuximab treated HT29 cells. Knockdown of FoxO3a could sensitize these cells to cetuximab treatment with reduced cell proliferation and migration ability. Further, biochemical experiments demonstrated that FoxO3a directly bind to c-Myc promoter and activated the transcription of the c-Myc gene, thus participated in regulating of c-Myc downstream genes, including ACO2, LARS2, MRPL12 and PKM2 in these resistant cells. Moreover, knockdown of c-Myc elevated cell apoptosis to cetuximab treatment and suppressed cell proliferation and migration ability consistently. Altogether, our study indicates that FoxO3a might be a key regulator in cetuximab resistance through up-regulating c-Myc in colorectal cancer targeted therapy.


Use of hydralazine-isosorbide dinitrate combination in African American and other race/ethnic group patients with heart failure and reduced left ventricular ejection fraction.

  • Harsh B Golwala‎ et al.
  • Journal of the American Heart Association‎
  • 2013‎

Hydralazine-isosorbide dinitrate (H-ISDN) therapy is recommended for African American patients with moderate to severe heart failure with reduced ejection fraction (<40%) (HFrEF), but use, temporal trends, and clinical characteristics associated with H-ISDN therapy in clinical practice are unknown.


Racial differences in the prevalence and outcomes of atrial fibrillation among patients hospitalized with heart failure.

  • Kevin L Thomas‎ et al.
  • Journal of the American Heart Association‎
  • 2013‎

The intersection of heart failure (HF) and atrial fibrillation (AF) is common, but the burden of AF among black patients with HF is poorly characterized. We sought to determine the prevalence of AF, characteristics, in-hospital outcomes, and warfarin use associated with AF in patients hospitalized with HF as a function of race.


miR-450b-5p induced by oncogenic KRAS is required for colorectal cancer progression.

  • Ya-Ping Ye‎ et al.
  • Oncotarget‎
  • 2016‎

The development and progression of CRC are regarded as a complicated network and progressive event including genetic and/or epigenetic alterations. Recent researches revealed that MicroRNAs are biomarkers and regulators of CRC progression. Analyses of published microarray datasets revealed that miR-450b-5p was highly up-regulated in CRC tissues. In addition, high expression of miR-450b-5p was significantly associated with KRAS mutation. However, the role of miR-450b-5p in the progression of CRC remains unknown. Here, we sought to validate the expression of miR-450b-5p in CRC tissues and investigate the role and underlying mechanism of miR-450b-5p in the progression of CRC. The results revealed that miR-450b-5p was up-regulated in CRC tissues, high expression level of miR-450b-5p was positively associated with poor differentiation, advanced TNM classification and poor prognosis. Moreover, miR-450b-5p was especially high in KRAS-mutated cell lines and could be up-regulated by KRAS/AP-1 signaling. Functional validation revealed that overexpression of miR-450b-5p promoted cell proliferation and tumor growth while inhibited apoptosis of CRC cells. Furthermore, we demonstrated that miR-450b-5p directly bound the 3'-UTRs of SFRP2 and SIAH1, and activated Wnt/β-Catenin signaling. In conclusion, miR-450b-5p induced by oncogenic KRAS is required for colorectal cancer progression. Collectively, our work helped to understand the precise role of miR-450b-5p in the progression of CRC, and might promote the development of new therapeutic strategies against CRC.


Validation of a multi-omics strategy for prioritizing personalized candidate driver genes.

  • Li Liang‎ et al.
  • Oncotarget‎
  • 2016‎

Significant heterogeneity between different tumors prevents the discovery of cancer driver genes, especially in a patient-specific manner. We previously prioritized five personalized candidate mutation-driver genes in a hyper-mutated hepatocellular carcinoma patient using a multi-omics strategy. However, the roles of the prioritized driver genes and patient-specific mutations in hepatocarcinogenesis are unclear. We investigated the impact of the tumor-mutated allele on structure-function relationship of the encoded protein and assessed both loss- and gain-of-function of these genes and mutations on hepatoma cell behaviors in vitro. The prioritized mutation-driver genes act as tumor suppressor genes and inhibit cell proliferation and migration. In addition, the loss-of-function effect of the patient-specific mutations promoted cell proliferation and migration. Of note, the HNF1A S247T mutation significantly reduced the HNF1A transcriptional activity for hepatocyte nuclear factor 4 alpha (HNF4A) but did not disrupt nuclear localization of HNF1A. The results provide evidence for supporting the validity of our proposed multi-omics strategy, which supplies a new avenue for prioritizing mutation-drivers towards personalized cancer therapy.


PCK1 negatively regulates cell cycle progression and hepatoma cell proliferation via the AMPK/p27Kip1 axis.

  • Lin Tuo‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2019‎

Altered glucose metabolism endows tumor cells with metabolic flexibility for biosynthesis requirements. Phosphoenolpyruvate carboxykinase 1 (PCK1), a key enzyme in the gluconeogenesis pathway, is downregulated in hepatocellular carcinoma (HCC) and predicts poor prognosis. Overexpression of PCK1 has been shown to suppress liver tumor growth, but the underlying mechanism remains unclear.


Development of ELISAs for diagnosis of acute typhoid fever in Nigerian children.

  • Jiin Felgner‎ et al.
  • PLoS neglected tropical diseases‎
  • 2017‎

Improved serodiagnostic tests for typhoid fever (TF) are needed for surveillance, to facilitate patient management, curb antibiotic resistance, and inform public health programs. To address this need, IgA, IgM and IgG ELISAs using Salmonella enterica serovar Typhi (S. Typhi) lipopolysaccharide (LPS) and hemolysin E (t1477) protein were conducted on 86 Nigerian pediatric TF and 29 non-typhoidal Salmonella (NTS) cases, 178 culture-negative febrile cases, 28 "other" (i.e., non-Salmonella) pediatric infections, and 48 healthy Nigerian children. The best discrimination was achieved between TF and healthy children. LPS-specific IgA and IgM provided receiver operator characteristic areas under the curve (ROC AUC) values of 0.963 and 0.968, respectively, and 0.978 for IgA+M combined. Similar performance was achieved with t1477-specific IgA and IgM (0.968 and 0.968, respectively; 0.976 combined). IgG against LPS and t1477 was less accurate for discriminating these groups, possibly as a consequence of previous exposure, although ROC AUC values were still high (0.928 and 0.932, respectively). Importantly, discrimination between TF and children with other infections was maintained by LPS-specific IgA and IgM (AUC = 0.903 and 0.934, respectively; 0.938 combined), and slightly reduced for IgG (0.909), while t1477-specific IgG performed best (0.914). A similar pattern was seen when comparing TF with other infections from outside Nigeria. The t1477 may be recognized by cross-reactive antibodies from other acute infections, although a robust IgG response may provide some diagnostic utility in populations where incidence of other infections is low, such as in children. The data are consistent with IgA and IgM against S. Typhi LPS being specific markers of acute TF.


Comparison of PD-L1 detection assays and corresponding significance in evaluation of diffuse large B-cell lymphoma.

  • Sixia Huang‎ et al.
  • Cancer medicine‎
  • 2019‎

The expression of programmed cell death ligand 1 (PD-L1) is a biomarker for immunotherapy, but approved detection method is absent in diffuse large B-cell lymphoma (DLBCL). Here, we performed three methods including immunohistochemistry (IHC) (clone SP263 and SP142), RNAscope, and fluorescence in situ hybridization (FISH) to evaluate PD-L1 status on a cohort of DLBCL including 94 of DLBCL-NOS, 25 of primary mediastinal large B-cell lymphoma (PMBCL) and 7 of double-hit lymphoma (DHL). SP263 with 25% for immune cell (IC) or combined cell and SP142 with 10% for tumor cell (TC), 20% for both of IC and combined cell were proved to have corresponding survival prognostic. Combined+ showed comparable prognostic value with TC+ and IC+ . SP263 and SP142 showed strong concordance (k = 0.788) with combined+ rates of 33.3% (42/126) and 34.9% (44/126), respectively. In DLBCL-NOS, TC+ by SP263 preferred to non-GCB and immunoblastic variant DLBCL-NOS (P = 0.029 and P = 0.004). Combined+ (SP263 and SP142) were associated with more than one extranodal site involved (P = 0.006, P = 0.042), higher ECOG PS scores (P = 0.001, P < 0.001), high IPI risk (P = 0.012, P = 0.005), and poor treatment response (P = 0.095, P = 0.002). IC+ by SP263 and SP142 were both independent risk factors (P = 0.027, P = 0.037). 9p24.1 locus amplification and gain were identified in 4.3% and 7.6% DLBCL-NOS and indicated shorter overall survival (P = 0.004). Positive rate of PD-L1 by RNAscope was 36.5%, while no clinical significance shown. PD-L1 positive rates were all higher in PMBCL and DHL than in DLBCL-NOS by SP263, SP142, RNAscope, and FISH (P = 0.001, P < 0.001, P = 0.005 and P < 0.001, respectively). In conclusion, combined PD-L1 expression by IHC was potentially reliable and convenient as a predicting biomarker. SP263 staining was easier to evaluate and recognized more PD-L1-stained cells, but SP142 presented a better prognostic indicator. FISH and RNAscope could be used as supplementary assays. PMBCL itself was a sensitive cohort for immunotherapy.


Rifampicin-Resistance Mutations in the rpoB Gene in Bacillus velezensis CC09 have Pleiotropic Effects.

  • Xun-Chao Cai‎ et al.
  • Frontiers in microbiology‎
  • 2017‎

Rifampicin resistance (Rifr) mutations in the RNA polymerase β subunit (rpoB) gene exhibit pleiotropic phenotypes as a result of their effects on the transcription machinery in prokaryotes. However, the differences in the effects of the mutations on the physiology and metabolism of the bacteria remain unknown. In this study, we isolated seven Rifr mutations in rpoB, including six single point mutations (H485Y, H485C, H485D, H485R, Q472R, and S490L) and one double point mutation (S490L/S617F) from vegetative cells of an endophytic strain, Bacillus velezensis CC09. Compared to the wild-type (WT) strain (CC09), the H485R and H485D mutants exhibited a higher degree of inhibition of Aspergillus niger spore germination, while the H485Y, S490L, Q472R, and S490L/S617F mutants exhibited a lower degree of inhibition due to their lower production of the antibiotic iturin A. These mutants all exhibited defective phenotypes in terms of pellicle formation, sporulation, and swarming motility. A hierarchical clustering analysis of the observed phenotypes indicated that the four mutations involving amino acid substitutions at H485 in RpoB belonged to the same cluster. In contrast, the S490L and Q472R mutations, as well as the WT strain, were in another cluster, indicating a functional connection between the mutations in B. velezensis and phenotypic changes. Our data suggest that Rifr mutations cannot only be used to study transcriptional regulation mechanisms, but can also serve as a tool to increase the production of bioactive metabolites in B. velezensis.


A Formulated TLR7/8 Agonist is a Flexible, Highly Potent and Effective Adjuvant for Pandemic Influenza Vaccines.

  • Neal Van Hoeven‎ et al.
  • Scientific reports‎
  • 2017‎

Since 1997, highly pathogenic avian influenza viruses of the H5N1 subtype have been transmitted from avian hosts to humans. The severity of H5N1 infection in humans, as well as the sporadic nature of H5N1 outbreaks, both geographically and temporally, make generation of an effective vaccine a global public health priority. An effective H5N1 vaccine must ultimately provide protection against viruses from diverse clades. Toll-like receptor (TLR) agonist adjuvant formulations have a demonstrated ability to broaden H5N1 vaccine responses in pre-clinical models. However, many of these agonist molecules have proven difficult to develop clinically. Here, we describe comprehensive adjuvant formulation development of the imidazoquinoline TLR-7/8 agonist 3M-052, in combination with H5N1 hemagglutinin (HA) based antigens. We find that 3M-052 in multiple formulations protects both mice and ferrets from lethal H5N1 homologous virus challenge. Furthermore, we conclusively demonstrate the ability of 3M-052 adjuvant formulations to broaden responses to H5N1 HA based antigens, and show that this broadening is functional using a heterologous lethal virus challenge in ferrets. Given the extensive clinical use of imidazoquinoline TLR agonists for other indications, these studies identify multiple adjuvant formulations which may be rapidly advanced into clinical trials in an H5N1 vaccine.


Exosomes derived from miR-301a-3p-overexpressing adipose-derived mesenchymal stem cells reverse hypoxia-induced erectile dysfunction in rat models.

  • Li Liang‎ et al.
  • Stem cell research & therapy‎
  • 2021‎

Erectile dysfunction (ED) has often been observed in patients with obstructive sleep apnea (OSA). Research on adipose-derived mesenchymal stem cell (ADSC)-derived exosomes has shown that they have significant therapeutic effects in many diseases including ED.


Efficacy and Safety of Probiotics in Irritable Bowel Syndrome: A Systematic Review and Meta-Analysis.

  • Bing Li‎ et al.
  • Frontiers in pharmacology‎
  • 2020‎

Irritable bowel syndrome is a functional gastrointestinal disease. Evidence has suggested that probiotics may benefit IBS symptoms. However, clinical trials remain conflicting.


Inhibition Mechanism of Indoleamine 2, 3-Dioxygenase 1 (IDO1) by Amidoxime Derivatives and Its Revelation in Drug Design: Comparative Molecular Dynamics Simulations.

  • Xinyu Liu‎ et al.
  • Frontiers in molecular biosciences‎
  • 2019‎

For cancer treatment, in addition to the three standard therapies of surgery, chemotherapy, and radiotherapy, immunotherapy has become the fourth internationally-recognized alternative treatment. Indoleamine 2, 3-dioxygenase 1 (IDO1) catalyzes the conversion of tryptophan to kynurenine causing lysine depletion, which is an important target in the research and development of anticancer drugs. Epacadostat (INCB024360) is currently one of the most potent IDO1 inhibitors, nevertheless its inhibition mechanism still remains elusive. In this work, comparative molecular dynamics simulations were performed to reveal that the high inhibitory activity of INCB024360 mainly comes from two aspects: disturbing the ligand delivery tunnel and then preventing small molecules such as oxygen and water molecules from accessing the active site, as well as hindering the shuttle of substrate tryptophan with product kynurenine through the heme binding pocket. The scanning of key residues showed that L234 and R231 residues both were crucial to the catalytic activity of IDO1. With the association with INCB024360, L234 forms a stable hydrogen bond with G262, which significantly affects the spatial position of G262-A264 loop and then greatly disturbs the orderliness of ligand delivery tunnel. In addition, the cleavage of hydrogen bond between G380 and R231 increases the mobility of the GTGG conserved region, leading to the closure of the substrate tryptophan channel. This work provides new ideas for understanding action mechanism of amidoxime derivatives, improving its inhibitor activity and developing novel inhibitors of IDO1.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: