Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 56 papers

Sialyltransferase ST3GAL4 confers osimertinib resistance and offers strategies to overcome resistance in non-small cell lung cancer.

  • Rui Han‎ et al.
  • Cancer letters‎
  • 2024‎

The third-generation EGFR-TKI osimertinib is widely used in EGFR-mutated positive non-small cell lung cancer (NSCLC) patients, but drug resistance is inevitable. The currently known mechanisms only explain resistance in a small proportion of patients. For most patients, the mechanism of osimertinib resistance is still unclear, especially for EGFR-independent resistance. Herein, we thoroughly investigated the novel mechanism of osimertinib resistance and treatment strategies. We identified that ST3GAL4, a sialyltransferase, catalyzes terminal glycan sialylation of receptor protein tyrosine kinases, which induces acquired resistance to osimertinib in vitro and in vivo. In addition, ST3GAL4 is generally overexpressed in osimertinib-resistant patients with unknown resistance mechanisms. ST3GAL4 modifies MET glycosylation on N785 with sialylation, which antagonizes K48-related ubiquitin-dependent MET degradation and subsequently activates MET and its downstream proliferation signaling pathways. Meanwhile, ST3GAL4 knockdown or inhibition by brigatinib resensitizes resistant non-small cell lung cancer cells to osimertinib in vitro and in vivo This study suggests that ST3GAL4 can induce acquired resistance to osimertinib, which may be an important EGFR-independent resistance mechanism Furthermore, targeting ST3GAL4 with brigatinib provides new strategies to overcome osimertinib resistance.


Overcoming resistance to targeted therapy with immunotherapy and combination therapy for metastatic melanoma.

  • Hilary R Keller‎ et al.
  • Oncotarget‎
  • 2017‎

Resistance to targeted therapy is an ongoing problem for the successful treatment of Stage IV metastatic melanoma. For many patients, the use of targeted therapies, such as BRAF kinase inhibitors, were initially promising yet resistance inevitably occurred. Even after combining BRAF kinase inhibitors with MEK pathway inhibitors to offset re-activation of the MAP kinase pathway, resistance is still documented. Similarly, outcomes with immune checkpoint inhibitors as monotherapy were optimistic for some patients without relapse or progression, yet the majority of patients undergoing monotherapy have progressive disease. Will immunotherapy and combination therapy trials overcome resistance in metastatic melanoma? In an effort to treat resistant disease, new clinical trials evaluating the combination of immunotherapy with other therapies, such as kinase inhibitors, adoptive cell therapy, chimeric CD40 ligand to boost costimulation, or a tumor-specific oncolytic virus enhancing granulocyte macrophage colony-stimulating factor (GM-CSF) expression, are currently underway. Updated studies on the mechanisms of resistance, immune escape and options to reinvigorate immune cells support the continued discovery of new and improved forms of therapy.


Ultrapotent neutralizing antibodies against SARS-CoV-2 with a high degree of mutation resistance.

  • Jia Zou‎ et al.
  • The Journal of clinical investigation‎
  • 2022‎

Many SARS-CoV-2 neutralizing antibodies (nAbs) lose potency against variants of concern. In this study, we developed 2 strategies to produce mutation-resistant antibodies. First, a yeast library expressing mutant receptor binding domains (RBDs) of the spike protein was utilized to screen for potent nAbs that are least susceptible to viral escape. Among the candidate antibodies, P5-22 displayed ultrahigh potency for virus neutralization as well as an outstanding mutation resistance profile. Additionally, P14-44 and P15-16 were recognized as mutation-resistant antibodies with broad betacoronavirus neutralization properties. P15-16 has only 1 binding hotspot, which is K378 in the RBD of SARS-CoV-2. The crystal structure of the P5-22, P14-44, and RBD ternary complex clarified the unique mechanisms that underlie the excellent mutation resistance profiles of these antibodies. Secondly, polymeric IgG enhanced antibody avidity by eliminating P5-22's only hotspot, residue F486 in the RBD, thereby potently blocking cell entry by mutant viruses. Structural and functional analyses of antibodies screened using both potency assays and the yeast RBD library revealed rare, ultrapotent, mutation-resistant nAbs against SARS-CoV-2.


Metallo-β-lactamases inhibitor fisetin attenuates meropenem resistance in NDM-1-producing Escherichia coli.

  • Yan Guo‎ et al.
  • European journal of medicinal chemistry‎
  • 2022‎

The prevalence and development of New Delhi metallo-β-lactamase-1 (NDM-1) have led to increases in bacterial resistance to the majority of clinically used antibiotics, including carbapenems. This study attempts to identify a novel inhibitor of NDM-1 for resistant bacteria infection. Herein, we found that fisetin, as an agent, distinctly inhibits the activity of NDM-1 (IC50 = 9.68 μg/mL) through on enzyme activity inhibition screening. Notably, fisetin is a metallo-β-lactamases inhibitor without the ability to chelate zinc ions, as well as with a significantly inhibitory effect on NDM-9, VIM-1, IMP-1 and KPC-2. The combination of fisetin with meropenem could attenuate meropenem resistance in NDM-1-positive Escherichia coli. The MIC values of combined treatment were lower than those found for meropenem or fisetin alone (FICI from 0.25 ± 0.00 to 0.38 ± 0.00) although fisetin lacks antibacterial activities (MIC>1024 μg/mL). Furthermore, fisetin combined with meropenem could kill all tested bacteria no more than 3 h in vitro and this synergistic effect could also be observed in vivo. Molecular dynamics simulations revealed that fisetin successfully inhibit the hydrolytic activity of NDM-1. Additionally, the mutation of NDM-1 resulted in a decreased inhibition of NDM-1 activity by fisetin compared with the WT protein. Finally, our results indicate that fisetin is an effective NDM-1 inhibitor, which suggests the combination of this compound with meropenem is a promising strategy for carbapenem-resistant bacterial infection.


Matrix stiffness modulates ILK-mediated YAP activation to control the drug resistance of breast cancer cells.

  • Xiang Qin‎ et al.
  • Biochimica et biophysica acta. Molecular basis of disease‎
  • 2020‎

One of the hallmarks of cancer progression is strong drug resistance during clinical treatments. The tumor microenvironment is closely associated with multidrug resistance, the optimization of tumor microenvironments may have a strong therapeutic effect. In this study, we configured polyacrylamide hydrogels of varying stiffness [low (10 kPa), intermediate (38 kPa) and high (57 kPa)] to simulate tissue physical matrix stiffness across different stages of breast cancer. After treatment with doxorubicin, cell survival rates on intermediate stiffness substrate are significantly higher. We find that high expression of ILK and YAP reduces the survival rates of breast cancer patients. Drug resistance is closely associated with the inactivation of the hippo pathway protein Merlin/MST/LATS and the activation of YAP. These results not only highlight the understanding of drug resistance mechanisms but also serve as a new basis for developing breast cancer treatment delivery systems.


Overcoming sunitinib resistance with tocilizumab in renal cell carcinoma: Discordance between in vitro and in vivo effects.

  • Hossam Kamli‎ et al.
  • Biochemical and biophysical research communications‎
  • 2022‎

Sunitinib is one of the first-line multi-tyrosine kinase inhibitors for metastatic renal cell carcinoma, and resistance to sunitinib continues to be a limiting factor for the successful treatment. As interleukin-6 (IL-6) is overexpressed in sunitinib-resistant cells, the purpose of this study was to explore the potential of IL-6 inhibition with tocilizumab, an IL-6 receptor inhibitor, to overcome resistance. In vitro, two sunitinib-resistant renal cell carcinoma cell lines (Caki-1 and SN12K1) were treated with tocilizumab. A mouse subcutaneous xenograft model was also used. Cell viability was studied by MTT assay, and apoptosis by morphology and ApopTag. Expression of IL-6, vascular endothelial growth factor (VEGF), and Bcl-2 was analyzed by qPCR. In vitro, tocilizumab induced significant cell death, and reduced the expression of IL-6, VEGF, and Bcl-2 in sunitinib-resistant cells. However, the in vitro findings could not be successfully translated in vivo, as tocilizumab did not decrease the growth of the tumors.


ALDH1A1 induces resistance to CHOP in diffuse large B-cell lymphoma through activation of the JAK2/STAT3 pathway.

  • Jinqiong Jiang‎ et al.
  • OncoTargets and therapy‎
  • 2016‎

Increasing evidence has shown that aldehyde dehydrogenase 1A1 (ALDH1A1), a detoxifying enzyme, is responsible for chemoresistance in a variety of tumors. Although the majority of patients with diffuse large B-cell lymphoma (DLBCL) can be cured with cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP), chemoresistance is a common cause of treatment failure. This study aims to investigate the significance of ALDH1A1 expression and the mechanism by which ALDH1A1 is involved in the chemoresistance of DLBCL cells. ALDH1A1 expression was assessed in 88 DLBCL tissues by immunohistochemistry. The association between ALDH1A1 expression and outcome was evaluated. We also investigated the effect of ALDH1A1 on CHOP resistance in DLBCL cells using functional analysis. ALDH1A1 expression levels were upregulated in patients with stable or progressive disease after CHOP and its expression positively correlated with expression of STAT3 and p-STAT3. In keeping with these observations, ALDH1A1 expression was significantly associated with short survival of DLBCL patients who received CHOP chemotherapy. In functional assays in Pfeiffer cells, overexpression of ALDH1A1 conferred resistance to CHOP, while silencing of ALDH1A1 using short hairpin RNA had the opposite effect. Furthermore, we also observed that ALDH1A1 could regulate the JAK2/STAT3 pathway, while inhibition of the JAK2/STAT3 pathway by WP1066 negated the effect of ALDH1A1 overexpression. These observations reveal that ALDH1A1 induces resistance to CHOP through activation of the JAK2/STAT3 pathway in DLBCL, and its targeting provides a potential strategic approach for reversing CHOP resistance.


HIV-1 transmitted drug resistance-associated mutations and mutation co-variation in HIV-1 treatment-naïve MSM from 2011 to 2013 in Beijing, China.

  • Yang Jiao‎ et al.
  • BMC infectious diseases‎
  • 2014‎

Transmitted drug resistance (TDR) is an important public health issue, because TDR-associated mutation may affect the outcome of antiretroviral treatment potentially or directly. Men who have sex with men (MSM) constitute a major risk group for HIV transmission. However, current reports are scarce on HIV TDR-associated mutations and their co-variation among MSM.


Ethanol-Induced Hepatic Insulin Resistance is Ameliorated by Methyl Ferulic Acid Through the PI3K/AKT Signaling Pathway.

  • Qi Cheng‎ et al.
  • Frontiers in pharmacology‎
  • 2019‎

One of the key events during the development of alcoholic liver disease (ALD) is that alcohol inhibits the insulin signaling pathway in liver and leads to disorders of glucose and lipid metabolism. Methyl ferulic acid (MFA) is a biologically active monomer isolated from the root of Securidaca inappendiculata Hasskarl. It has been reported that MFA has a hepatoprotective effect against alcohol-induced liver injury in vivo and in vitro. However, the effect of MFA on ethanol-induced insulin resistance in ALD remains unclear. In this study, we investigated whether MFA could exert protective effects against hepatic insulin resistance in ethanol-induced L-02 cells and ALD rats. ALD was induced in vivo by feeding Lieber-DeCarli diet containing 5% (w/v) alcohol for 16 weeks to Sprague-Dawley rats. Insulin resistance was induced in vitro in human hepatocyte L-02 cells with 200 mM ethanol for 24 h followed by 10-7 nM insulin for 30 min. MFA exhibited the effects of inhibited insulin resistance, reduced enzymatic capacity for hepatic gluconeogenesis, and increased hepatic glycogen synthesis both in vivo and in vitro. In addition, the results of transcriptome sequencing of liver tissues in the ethanol- and MFA-treated groups indicated that "pyruvate metabolism," "glycolysis/gluconeogenesis," and "fatty acid metabolism" were significantly different between ethanol- and MFA-treated groups. Further studies suggested that MFA activated the hepatic phosphatidylinositol 3-kinase (PI3K)/AKT pathway in vivo and in vitro. Taken together, these findings suggested that MFA effectively ameliorated hepatic insulin resistance in ALD at least partially by acting on the PI3K/AKT pathway.


Combined treatment with metformin and gefitinib overcomes primary resistance to EGFR-TKIs with EGFR mutation via targeting IGF-1R signaling pathway.

  • Yong-Hong Pan‎ et al.
  • Biologics : targets & therapy‎
  • 2018‎

Although EGFR tyrosine kinase inhibitors (TKIs) have shown dramatic effects against sensitizing EGFR mutations in non-small cell lung cancer (NSCLC), ~20%-30% of NSCLC patients with EGFR-sensitive mutation exhibit intrinsic resistance to EGFR-TKIs. The purpose of the current study was to investigate the enhanced antitumor effect of metformin (Met), a biguanide drug, in combination with gefitinib (Gef) in primary resistant human lung cancer cells and the associated molecular mechanism.


Using a transcriptome sequencing approach to explore candidate resistance genes against stemphylium blight in the wild lentil species Lens ervoides.

  • Zhe Cao‎ et al.
  • BMC plant biology‎
  • 2019‎

Stemphylium blight (SB), caused by Stemphylium botryosum, is a devastating disease in lentil production. Although it is known that accessions of Lens ervoides possess superior SB resistance at much higher frequency than the cultivated lentil species, very little is known about the molecular basis regulating SB resistance in L. ervoides. Therefore, a comprehensive molecular study of SB resistance in L. ervoides was needed to exploit this wild resource available at genebanks for use by plant breeders in resistance breeding.


The Comparison of Metagenomic Next-Generation Sequencing with Conventional Microbiological Tests for Identification of Pathogens and Antibiotic Resistance Genes in Infectious Diseases.

  • Hongzhi Lu‎ et al.
  • Infection and drug resistance‎
  • 2022‎

Metagenomic next-generation sequencing (mNGS) has been widely studied, due to its ability of detecting all the microbial genetic information unbiasedly in a sample at one time and not relying on traditional culture. However, the application of mNGS in the diagnosis of clinical pathogens remains challenging.


Myxovirus resistance (Mx) gene and its differential expression regulated by three type I and two type II IFNs in mandarin fish, Siniperca chuatsi.

  • Li Li‎ et al.
  • Developmental and comparative immunology‎
  • 2020‎

Interferons (IFNs) can induce the expression of IFN-stimulated genes (ISGs), such as myxovirus resistance (Mx) protein, to inhibit virus replication. In this study, the expression of Mx gene in mandarin fish, and the IFN-sensitive response elements (ISREs) and gamma-interferon activated sites (GASs) in the promoter of Mx gene were analyzed in relation to the stimulation of three distinct type I IFNs, IFNc, IFNd and IFNh, and two type II IFNs, IFN-γ and IFN-γ related molecule (IFN-γrel). A single Mx gene was found in mandarin fish, and its expression was highly and constitutively observed in all organs/tissues examined. The Mx gene was significantly induced in vivo for 120 h following infectious spleen and kidney necrosis virus (ISKNV) infection. Furthermore, the overexpression and recombinant of IFNh, IFNc, as well as IFN-γ can significantly induce Mx expression in MFF-1 cells at transcript and protein levels, although all the three type I IFNs and the two type II IFNs can activate the Mx promoter. In addition, ISRE1 which is the proximal one among the three predicted ISREs seems to be the important ISRE for the higher and efficient activation of the Mx promoter. However, the possible interaction between the GASs and type II IFN signalling molecules require further study.


Comparative transcript profiling by SuperSAGE identifies novel candidate genes for controlling potato quantitative resistance to late blight not compromised by late maturity.

  • Astrid M Draffehn‎ et al.
  • Frontiers in plant science‎
  • 2013‎

Resistance to pathogens is essential for survival of wild and cultivated plants. Pathogen susceptibility causes major losses of crop yield and quality. Durable field resistance combined with high yield and other superior agronomic characters are therefore, important objectives in every crop breeding program. Precision and efficacy of resistance breeding can be enhanced by molecular diagnostic tools, which result from knowledge of the molecular basis of resistance and susceptibility. Breeding uses resistance conferred by single R genes and polygenic quantitative resistance. The latter is partial but considered more durable. Molecular mechanisms of plant pathogen interactions are elucidated mainly in experimental systems involving single R genes, whereas most genes important for quantitative resistance in crops like potato are unknown. Quantitative resistance of potato to Phytophthora infestans causing late blight is often compromised by late plant maturity, a negative agronomic character. Our objective was to identify candidate genes for quantitative resistance to late blight not compromised by late plant maturity. We used diagnostic DNA-markers to select plants with different field levels of maturity corrected resistance (MCR) to late blight and compared their leaf transcriptomes before and after infection with P. infestans using SuperSAGE (serial analysis of gene expression) technology and next generation sequencing. We identified 2034 transcripts up or down regulated upon infection, including a homolog of the kiwi fruit allergen kiwellin. 806 transcripts showed differential expression between groups of genotypes with contrasting MCR levels. The observed expression patterns suggest that MCR is in part controlled by differential transcript levels in uninfected plants. Functional annotation suggests that, besides biotic and abiotic stress responses, general cellular processes such as photosynthesis, protein biosynthesis, and degradation play a role in MCR.


NRP1 is targeted by miR-130a and miR-130b, and is associated with multidrug resistance in epithelial ovarian cancer based on integrated gene network analysis.

  • Changxian Chen‎ et al.
  • Molecular medicine reports‎
  • 2016‎

Multidrug resistance (MDR) in epithelial ovarian cancer (EOC) remains a public health issue for women worldwide, and its molecular mechanisms remain to be fully elucidated. The present study aimed to predict the potential genes involved in MDR, and examine the mechanisms underlying MDR in EOC using bioinformatics techniques. In the present study, four public microarray datasets, including GSE41499, GSE33482, GSE15372 and GSE28739, available in Gene Expression Omnibus were downloaded, and 11 microRNAs (miRNA; miRs), including miR‑130a, miR‑214, let‑7i, miR‑125b, miR‑376c, miR‑199a, miR‑93, miR‑141, miR‑130b, miR‑193b* and miR‑200c, from previously published reports in PubMed were used to perform a comprehensive bioinformatics analysis through gene expression analysis, signaling pathway analysis, literature co‑occurrence and miRNA‑mRNA interaction networks. The results demonstrated that the expression of neuropilin 1 (NRP1) was upregulated, thereby acting as the most important hub gene in the integrated gene network. NRP1 was targeted by miR‑130a and miR‑130b at the binding site of chromosome 10: 33466864‑3466870, which was involved in the axon guidance signaling pathway. These results suggested that alteration of the gene expression levels of NRP1 expression may contribute to MDR in EOC. These data provide important information for further experimental investigations of the drug resistance‑associated functions of NRP1 in EOC.


Disease Comorbidity Network Guides the Detection of Molecular Evidence for the Link Between Colorectal Cancer and Obesity.

  • Yang Chen‎ et al.
  • AMIA Joint Summits on Translational Science proceedings. AMIA Joint Summits on Translational Science‎
  • 2015‎

Epidemiological studies suggested that obesity increases the risk of colorectal cancer (CRC). The genetic connection between CRC and obesity is multifactorial and inconclusive. In this study, we hypothesize that the study of shared comorbid diseases between CRC and obesity can offer unique insights into common genetic basis of these two diseases. We constructed a comorbidity network based on mining health data for millions of patients. We developed a novel approach and extracted the diseases that play critical roles in connecting obesity and CRC in the comorbidity network. Our approach was able to prioritize metabolic syndrome and diabetes, which are known to be associated with obesity and CRC through insulin resistance pathways. Interestingly, we found that osteoporosis was highly associated with the connection between obesity and CRC. Through gene expression meta-analysis, we identified novel genes shared among CRC, obesity and osteoporosis. Literature evidences support that these genes may contribute in explaining the genetic overlaps between obesity and CRC.


Network Pharmacology-Based Investigation of the Therapeutic Mechanisms of Action of Danning Tablets in Nonalcoholic Fatty Liver Disease.

  • Tong Lin‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2021‎

Nonalcoholic fatty liver disease (NAFLD) is a rising global public health concern due to its prevalence. Danning Tablets (DNt), a composite prescription of Chinese herbal medicine, shows significant curative effects on NAFLD in clinical application. This study aimed to decipher the bioactive substances and potential mechanisms of action of DNt in the treatment of NAFLD, applying an integrated network pharmacology approach. First, the bioactive compounds of DNt were screened based on their pharmacokinetic properties, and the corresponding drug targets were predicted. Then, the NAFLD-related targets were collected. The overlapping targets between the putative targets of DNt and NAFLD-related targets were identified as the potential therapeutic targets of DNt against NAFLD. Subsequently, the networks were constructed and analyzed, and the key bioactive compounds and targets were screened out depending on their importance in the networks. Functional enrichment analysis was carried out to elucidate the potential mechanisms of DNt acting on NAFLD. Finally, a molecular docking simulation was implemented to assess the potential binding affinity between the key targets and the bioactive compounds. As a result, 43 bioactive compounds of DNt and 69 putative targets were identified. Based on the network analysis, we found seven key bioactive compounds (quercetin, ß-sitosterol, luteolin, kaempferol, supraene, curcumenolactone C, and stigmasterol) of DNt might treat NAFLD via intervening IL6, MAPK8, VEGFA, CASP3, ALB, APP, MYC, PPARG, and RELA. The functional enrichment analysis revealed that DNt might affect NAFLD by modulating the signaling pathways involved in lipid metabolism, inflammation, oxidation, insulin resistance (IR), atherosclerosis, and apoptosis. Furthermore, most key bioactive compounds might bind firmly with the key targets. This study predicted the multicomponent, multitarget, and multipathway mechanisms of DNt in the treatment of NAFLD from a holistic perspective. DNt could be a promising agent for NAFLD, but further experimental verifications are still needed.


NPR-C gene polymorphism is associated with increased susceptibility to coronary artery disease in Chinese Han population: a multicenter study.

  • Qin Hu‎ et al.
  • Oncotarget‎
  • 2016‎

To find a new locus that confers significant susceptibility to CAD in Chinese Han population, a genome-wide association study in 200 "extreme individuals" from a Shandong cohort and a pathway-based candidate gene study from a Shanghai cohort (293 CAD/293 controls) were simultaneously performed. Amongst them, 13 SNPs associated with CAD were selected to conduct validation and replication studies in additional 3363 CAD patients and 3148 controls. A novel locus rs700926 in natriuretic peptide receptor C (NPR-C) was identified in Shandong and Hubei cohorts. Then rs700926 and other nine tag SNPs were genotyped in four geographically different populations (Shandong, Shaanxi, Hubei and Sichuan cohorts), and 6 SNPs (rs700926, rs1833529, rs2270915, rs17541471, rs3792758 and rs696831) showed stronger association with CAD, regardless of single or combined analysis. We further genotyped rs2270915 and 10 additional tag SNPs in a central China cohort and identified rs12697273 and rs10066436 as the loci associated with CAD. All these positive associations remained significant after adjustment for traditional risk factors of CAD. NPR-C gene SNPs significantly contribute to CAD susceptibility in the Chinese Han population.


MicroRNA Expression Profiling Screen miR-3557/324-Targeted CaMK/mTOR in the Rat Striatum of Parkinson's Disease in Regular Aerobic Exercise.

  • Wenfeng Liu‎ et al.
  • BioMed research international‎
  • 2019‎

This study aimed to screen the target miRNAs and to investigate the differential miR-3557/324-targeted signal mechanisms in the rats' model of Parkinson's disease (PD) with regular aerobic exercise. Rats were divided into sedentary control PD group (SED-PD, n = 18) and aerobic exercise PD group (EX-PD, n = 22). After 8 weeks of regular aerobic exercise, a 6-hydroxydopamine- (6-OHDA-) induced PD lesion model was constructed. Preregular aerobic exercises enhanced the injury resistance of rats with 6-OHDA-induced PD. The rotational behavior after injection of apomorphine hydrochloride was alleviated. Under the scanning electron microscopy, we found the neurons, axons, and villi of the striatum were clearly and tightly arranged, and neurons and axons significantly becoming larger. Tyrosine hydroxylase (TH) was increased significantly and α-synuclein protein expression was reduced in the EX-PD group compared to the SED-PD group. Screening from miRNA microarray chip, we further found upregulation of miR-3557 and downregulation of miR-324 were closely related to the calcium-modulating signaling pathway, remitting the progress of Parkinson's disease on aerobic exercise. Compared to the SED-PD group, Ca2+/calmodulin dependent protein kinase II (CaMK2α) was upregulated, but CaMKV and voltage-dependent anion-selective channel protein 1 (Vdac1) were significantly downregulated in the EX-PD group. Additionally, phosphatidylinositol-3-kinase (PI3K)/mammalian target of rapamycin (mTOR) expression were activated, and ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) expression was upregulated in the EX-PD group. Conclusions: the adaptive mechanism of regular aerobic exercise delaying neurodegenerative diseases and lesions was that miR-3557/324 was activated to regulate one of its targets CaMKs signaling pathways. CaMKs, coordinated with mTOR pathway-related gene expression, improved UCH-L1 level to favor for delaying neurodegeneration or improving the pathogenesis of PD lesions.


Vorinostat and metformin sensitize EGFR-TKI resistant NSCLC cells via BIM-dependent apoptosis induction.

  • Hengyi Chen‎ et al.
  • Oncotarget‎
  • 2017‎

There is a close relationship between low expression of BIM and resistance to epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI). Vorinostat is a pan-histone deacetylase inhibitor (HDACi) that augments BIM expression in various types of tumor cells, however, this effect is attenuated by the high expression of anti-apoptotic proteins in EGFR-TKI resistant non-small cell lung cancer (NSCLC) cells. Vorinostat in combination with metformin - a compound that can inhibit anti-apoptotic proteins expression, might cooperate to activate apoptotic signaling and overcome EGFR-TKI resistance. This study aimed to investigate the cooperative effect and evaluate possible molecular mechanisms. The results showed that vorinostat combined with gefitinib augmented BIM expression and increased the sensitivity of EGFR-TKI resistant NSCLC cells to gefitinib, adding metformin simultaneously could obviously inhibit the expression of anti-apoptotic proteins, and further increased expression levels of BIM and BAX, and as a result, further improved the sensitivity of gefitinib both on the NSCLC cells with intrinsic and acquired resistance to EGFR-TKI. In addition, autophagy induced by gefitinib and vorinostat could be significantly suppressed by metformin, which might also contribute to enhance apoptosis and improve sensitivity of gefitinib. These results suggested that the combination of vorinostat and metformin might represent a novel strategy to overcome EGFR-TKI resistance associated with BIM-dependent apoptosis in larger heterogeneous populations.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: