Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 16 papers out of 16 papers

Creatine modulates cellular energy metabolism and protects against cancer cachexia-associated muscle wasting.

  • Lulu Wei‎ et al.
  • Frontiers in pharmacology‎
  • 2022‎

Cancer cachexia is a multifactorial syndrome defined by progressive loss of body weight with specific depletion of skeletal muscle and adipose tissue. Since there are no FDA-approved drugs that are available, nutritional intervention is recommended as a supporting therapy. Creatine supplementation has an ergogenic effect in various types of sports training, but the regulatory effects of creatine supplementation in cancer cachexia remain unknown. In this study, we investigated the impact of creatine supplementation on cachectic weight loss and muscle loss protection in a tumor-bearing cachectic mouse model, and the underlying molecular mechanism of body weight protection was further assessed. We observed decreased serum creatine levels in patients with cancer cachexia, and the creatine content in skeletal muscle was also significantly decreased in cachectic skeletal muscle in the C26 tumor-bearing mouse model. Creatine supplementation protected against cancer cachexia-associated body weight loss and muscle wasting and induced greater improvements in grip strength. Mechanistically, creatine treatment altered the dysfunction and morphological abnormalities of mitochondria, thus protecting against cachectic muscle wasting by inhibiting the abnormal overactivation of the ubiquitin proteasome system (UPS) and autophagic lysosomal system (ALS). In addition, electron microscopy revealed that creatine supplementation alleviated the observed increase in the percentage of damaged mitochondria in C26 mice, indicating that nutritional intervention with creatine supplementation effectively counteracts mitochondrial dysfunction to mitigate muscle loss in cancer cachexia. These results uncover a previously uncharacterized role for creatine in cachectic muscle wasting by modulating cellular energy metabolism to reduce the level of muscle cell atrophy.


The Mechanism Underlying the Protective Effects of Tannic Acid Against Isoproterenol-Induced Myocardial Fibrosis in Mice.

  • Donglai Ma‎ et al.
  • Frontiers in pharmacology‎
  • 2020‎

Tannic acid (TA) belongs to a class of complex water-soluble polyphenolic derivatives that show anticarcinogenic, antiinflammatory, antioxidant, and scavenging activities. Here, we investigate the protective effects of TA against isoproterenol (ISO)-induced myocardial fibrosis (MF) in mice. Mice received TA and ISO dosing and were sacrificed 48 h later. The activities of creatine kinase (CK), creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), and mitochondria enzymes were measured. Cardiac histopathology was done using H&E, Sirius red, and Masson's Trichrome staining. Immunohistochemical staining was applied to indicate changes in B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), and basic fibroblast growth factor (bFGF) protein expressions in cardiac tissue. RT-PCR was used to measure the expression of atrial and brain natriuretic peptides (ANP and BNP, respectively), c-fos, and c-jun. Western blotting was used to measure the expression of nuclear factor-κB (NF-κB) p65, phosphorylated NF-κB p65), toll-like receptor 4 (TLR4), p38, phosphorylated p38, Bax, Bcl-2, and caspase-3. Compared to the ISO group, the TA group had reduced levels of TLR4, p38, p-p38, NF-κB (p65), p-NF-κB (p-p65), caspase-3, Bax, and Bcl-2, as well as CK, CK-MB, and LDH. These results indicate that TA protects against ISO-induced MF, possibly through its ability to suppress the TLR4-mediated NF-κB signaling pathway.


Metabonomic Analysis of the Therapeutic Effects of Chinese Medicine Sanqi Oral Solution on Rats With Exhaustive Exercise.

  • Peng Xu‎ et al.
  • Frontiers in pharmacology‎
  • 2019‎

Exhaustive exercise has emerged as an important health issue nowadays. This study was designed to assess the metabolite abnormalities of rats after exhaustive exercise and the holistic efficacy of Chinese medicine Sanqi oral solution (SQ). Through exhaustive swimming, the exhaustive exercise model in rats was established. Thirty male Sprague-Dawley rats were randomly divided into control, model, and treatment groups. SQ (12 mL·kg-1·d-1) or 0.9% saline solution was administrated orally by gastric gavage. After 4 weeks, serum samples were collected for biochemical measurements and ultra performance liquid chromatography (UPLC)/quadrupole time-of-flight mass spectrometry (Q-TOF-MS)-based metabonomic study. It was found that rats with SQ intervention showed longer exhaustive swimming time (P < 0.05) than model rats, with an average of 1,160.36 ± 123.89 s in SQ group and 906.57 ± 172.11 s in model group. Among the biochemical indices, the levels of creatine kinase isoenzyme, lactate dehydrogenase, and glucose of exhaustive exercise rats increased, whereas levels of creatine kinase, urea, triglyceride, and total cholesterol decreased. These biochemical indices came normal after SQ administration, except for triglyceride. Twenty-seven potential biomarkers belonging to sphingolipids, phospholipids, fatty acids, amino acid, and other classes were identified in serum. This study indicated that SQ exerted protective effects on exhaustive exercise by significantly prolonging the swimming endurance time. The metabonomic-based findings of the metabolic state and analysis of potential biomarkers in serum well correlated with biochemical assessment, confirming that SQ had a definite efficacy. Moreover, the shifts in lipid-related metabolites and glycolytic pathway suggested that SQ may serve as a potential supplementation in sports nutrition for its pharmacological effect of regulating energy metabolism as well as improving signal transduction and muscle-cell physiological functions.


Perfluorooctane sulfonate induces heart toxicity involving cardiac apoptosis and inflammation in rats.

  • Dongmin Xu‎ et al.
  • Experimental and therapeutic medicine‎
  • 2022‎

Perfluorooctane sulfonate (PFOS) is a persistent pollutant that exerts toxicity and induces cardiogenesis in humans and animals. Yet, the effect of PFOS exposure on cardiac toxicity in adult rats has, to our knowledge, not been reported and the mechanism still remains unknown. The present study aimed to investigate the toxicity of PFOS on rat hearts and any associated mechanisms. Rats were exposed to 0 (control), 1 and 10 mg/kg PFOS every other day for 14 days. Body weight and heart weight were recorded. The serum levels of lactic dehydrogenase (LDH), creatine kinase (CK), creatine kinase-isoenzyme-MB (CK-MB) and cardiac troponin-T (cTn-T) in heart tissues were measured using biochemical assays. TUNEL staining and western blotting were applied to analyze levels of apoptosis in rat hearts. Pathological assessment and immunohistochemistry analysis of heart tissues were used to evaluate the levels of PFOS-induced cardiotoxicity and inflammatory infiltration. PFOS exposure at the dosage of 10 mg/kg significantly increased the percentage of heart to body weight; however, it did not alter the body weight. At 10 mg/kg, PFOS significantly increased expression levels of myocardial injury markers, such as cTn-T, LDH, CK and CK-MB, while 1 mg/kg PFOS upregulated the expression level of cTn-T in rats. Notably, cardiac fibrosis and myocardiac hypertrophy appeared in the 10 mg/kg PFOS group. In addition, TUNEL-positive cells were significantly increased by exposure to 10 mg/kg PFOS in rat heart tissues. The protein expressions profiles of p53 and Bax were also significantly upregulated in the 10 mg/kg PFOS group. Inflammatory infiltration, detected by anaylzing expression levels of IL-1β and TNF-α, was significantly raised by 10 mg/kg PFOS exposure. In conclusion, these results demonstrated that 10 mg/kg PFOS-induced cardiac toxicity in rats, which was associated with an increase in apoptosis and the expression of proinflammatory cytokines.


Sodium-Glucose Cotransporter 2 Inhibitor Canagliflozin Antagonizes Salt-Sensitive Hypertension Through Modifying Transient Receptor Potential Channels 3 Mediated Vascular Calcium Handling.

  • Yu Zhao‎ et al.
  • Journal of the American Heart Association‎
  • 2022‎

Background Salt-sensitive hypertension is highly prevalent and associated with cardiorenal damage. Large clinical trials have demonstrated that SGLT2 (sodium-glucose cotransporter 2) inhibitors exert hypotensive effect and cardiorenal protective benefits in patients with hypertension with and without diabetes. However, the underlying mechanism remains elusive. Methods and Results Dahl salt-sensitive rats and salt-insensitive controls were fed with 8% high-salt diet and some of them were treated with canagliflozin. The blood pressure, urinary sodium excretion, and vascular function were detected. Transient receptor potential channel 3 (TRPC3) knockout mice were used to explain the mechanism. Canagliflozin treatment significantly reduced high-salt-induced hypertension and this effect was not totally dependent on urinary sodium excretion in salt-sensitive hypertensive rats. Assay of vascular function and proteomics showed that canagliflozin significantly inhibited vascular cytoplasmic calcium increase and vasoconstriction in response to high-salt diet. High salt intake increased vascular expression of TRPC3 in salt-sensitive rats, which could be alleviated by canagliflozin treatment. Overexpression of TRPC3 mimicked salt-induced vascular cytosolic calcium increase in vitro and knockout of TRPC3 erased the antihypertensive effect of canagliflozin. Mechanistically, high-salt-induced activation of NCX1 (sodium-calcium exchanger 1) reverse mode increased cytoplasmic calcium level and vasoconstriction, which required TRPC3, and this process could be blocked by canagliflozin. Conclusions We define a previously unrecognized role of TRPC3/NCX1 mediated vascular calcium dysfunction in the development of high-salt-induced hypertension, which can be improved by canagliflozin treatment. This pathway is potentially a novel therapeutic target to antagonize salt-sensitive hypertension.


Cardiotoxicity of Intravenously Administered CdSe/ZnS Quantum Dots in BALB/c Mice.

  • Li Li‎ et al.
  • Frontiers in pharmacology‎
  • 2019‎

Since CdSe quantum dots (QDs) are increasingly used in electronics, medical, and pharmaceutical science due to their excellent optical properties, it is necessary to carry out thorough and systematic studies on their biosafety. Numerous studies have reported the toxicity of QDs on liver, kidney, immune system, and reproductive system. However, few studies have been done on the cardiotoxicity of QDs. In this study, we administered carboxylated CdSe/ZnS QDs in BALB/c mice via the tail vein and analyzed the in vivo cardiotoxicity of CdSe/ZnS QDs. The body weight, hematology, serum biochemistry, histology, heart elements concentration, echocardiography, and heart oxidative stress markers were carried out at different time. There were no significant differences in body weight and heart organ index between QDs group and the control group. Hematology results showed the platelet (PLT) counts on Day 1 and Day 42 in both high dose QDs group and low dose QDs group, and the PLT counts on Day1 in the high dose group were significantly higher than that in control group. Serum biochemistry results showed that lactate dehydrogenase (LDH), creatine kinase (CK), and creatine kinase isoenzyme (CK-MB) of mice exposed to CdSe/ZnS QDs were significantly higher than that of the control group on Day 1, and CK-MB levels still remained high on Day 7. A higher concentration of Cd was observed in the heart of CdSe/ZnS QDs exposed mice on Day 42, whereas no Cd was detected in the control group, which suggested that QDs can accumulate in heart. No significant histopathological changes and cardiac function were observed in all mice at different time after treatment. Increased level of glutathione peroxidase (GPx) and malondialdehyde (MDA) was observed in mice administered with high dose QDs on Day 1, and increased level of total antioxidant capacity (T-AOC) and MDA activities was observed on Day 42. These results indicated that CdSe/ZnS QDs could accumulate in heart, cause some biochemical indicators change, induce oxidative damage, and have cardiotoxicity. Our findings might provide valuable information on the biological safety evaluation of the cardiovascular system of QDs.


Mechanisms underlying the protective effect of tannic acid against arsenic trioxide‑induced cardiotoxicity in rats: Potential involvement of mitochondrial apoptosis.

  • Yucong Xue‎ et al.
  • Molecular medicine reports‎
  • 2020‎

Arsenic trioxide (ATO) is a frontline chemotherapy drug used in the therapy of acute promyelocytic leukemia. However, the clinical use of ATO is hindered by its cardiotoxicity. The present study aimed to observe the potential effects and underlying mechanisms of tannic acid (TA) against ATO‑induced cardiotoxicity. Male rats were intraperitoneally injected with ATO (5 mg/kg/day) to induce cardiotoxicity. TA (20 and 40 mg/kg/day) was administered to evaluate its cardioprotective efficacy against ATO‑induced heart injury in rats. Administration of ATO resulted in pathological damage in the heart and increased oxidative stress as well as levels of serum cardiac biomarkers creatine kinase and lactate dehydrogenase and the inflammatory marker NF‑κB (p65). Conversely, TA markedly reversed this phenomenon. Additionally, TA treatment caused a notable decrease in the expression levels of cleaved caspase‑3/caspase‑3, Bax, p53 and Bad, while increasing Bcl‑2 expression levels. Notably, the application of TA decreased the expression levels of cytochrome c, second mitochondria‑derived activator of caspases and high‑temperature requirement A2, which are apoptosis mitochondrial‑associated proteins. The present findings indicated that TA protected against ATO‑induced cardiotoxicity, which may be associated with oxidative stress, inflammation and mitochondrial apoptosis.


10-Gingerol alleviates hypoxia/reoxygenation-induced cardiomyocyte injury through inhibition of the Wnt5a/Frizzled-2 pathway.

  • Bin Zheng‎ et al.
  • Food science & nutrition‎
  • 2021‎

10-Gingerol (10-Gin), an active ingredient extracted from ginger, has been reported to have beneficial effects on the cardiovascular system. However, 10-Gin has not been proved to offer protection against cardiomyocyte injury induced by hypoxia/reoxygenation (H/R). This study aimed to investigate the protective effects of 10-Gin against H/R-induced injury and its potential mechanisms in cardiomyocytes. A H/R injury model of H9c2 cardiomyocytes was established using 600 μmol/L CoCl2 to induce hypoxia in the cells for 24 hr and then reoxygenated for 3 hr. 10-Gin was pretreated with H9c2 cardiomyocytes for 24 hr to assess its cardiomyocyte protection. Our results showed that 10-Gin improved the viability of H9c2 cardiomyocytes in the H/R model and decreased the activities of creatine kinase, lactate dehydrogenase, and the generation of reactive oxygen species. By intracellular Ca2+ ([Ca2+]i) fluorescence, we found that 10-Gin could significantly reduce the [Ca2+]i concentration. 10-Gin administration increased the activities of antioxidase and reduced malondialdehyde content and inflammatory cytokine levels. 10-Gin also reduced the apoptosis levels. Importantly, 10-Gin administration decreased the gene and protein expressions of Wnt5a and Frizzled-2. In conclusion, 10-Gin alleviates H/R-induced cardiomyocyte injury, which is associated with the antioxidation, anti-inflammation, antiapoptosis action, and reduction of [Ca2+]i overload by suppressing the Wnt5a/Frizzled-2 pathway.


Effects of burdock inulin-type fructans exposure on the physiological function of healthy mice and their filial generation.

  • Chunyan Liu‎ et al.
  • The Journal of veterinary medical science‎
  • 2023‎

Inulin-type fructans (ITFs) have been shown to possess various biological activities. However, studies on their safety and side effects are limited. Hence, we aimed to evaluate the possible effects of burdock ITFs on the physiological indices of healthy mice and their filial generation when fed for six months. Thirty-two C57BL/6J mice were randomly divided into two groups; a normal control (NC) and an ITFs group. The parental generations were kept in one cage with free access to a normal diet and double-distilled water (P-NC group) or burdock ITFs drinking water (P-ITFs group, 2% w/v). The filial generations (F-NC group and F-ITFs group) were kept separately and were fed as their parental generation. Behavior, organ/body weight, serum indices, histopathology, time of production, and number of pup births were observed. There were no significant adverse effects on these indices. Functional indices of the spleen, lung, heart, and pancreas of the ITFs groups were higher than those of the NC groups, respectively. Interestingly, the serum glucose (GLU), total cholesterol (TC), uric acid (UA) and creatine kinase (CK) levels of the ITFs groups were lower than those of the NC groups. Meanwhile, the pregnancy number and pup birth number of the P-ITFs group were more than those of P-NC group. Therefore, long-term consumption of burdock ITFs has no obvious adverse effects on the health of parental mice and their offspring, but may contribute to reproductive capacity, fatigue reduction, and risk reduction of renal disease.


Vaccarin alleviates cisplatin-induced acute kidney injury via decreasing NOX4-derived ROS.

  • Tingni Wu‎ et al.
  • Heliyon‎
  • 2023‎

Cisplatin is a chemotherapeutant widely used in treating solid tumors, with the common side effect of acute kidney injury (AKI). Developing effective useful agent for preventing or treating cisplatin-induced AKI is of great importance. In this study, we investigate the protective effect of vaccarin, a chemical entity of flavonoid glycoside, against cisplatin-induced AKI. Cisplatin-treated C57BL/6J mice and human kidney-2 (HK-2) cells were used as the model of cisplatin-induced AKI. The levels of blood urea nitrogen (BUN) and creatine (Cr) levels and periodic acid-Schiff staining (PAS) scores decreased when vaccarin was administrated. Vaccarin had no impact on renal platinum accumulation, which was detected by the ICP-MS 6 h after cisplatin injection. Moreover, vaccarin can significantly alleviate the product of reactive oxygen species and the expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4) in cisplatin-induced AKI, both in vivo and in vitro. In addition, vaccarin decreased the receptor-interacting protein kinase 1 (RIPK1) related programmed necrosis (necroptosis), cell apoptosis (shown by the protein levels of cleaved-caspase3 and flow cytometry) and inflammation (shown by the decreased levels of NLRP3, p-P65 and the mRNA of several inflammatory factors). NOX4 inhibitor GLX351322 (GLX) and NOX4 kowndown by siRNA have equivalent protective effect of vaccarin in vitro. When vaccarin was administered together with GLX or NOX4 siRNA, this protective effect of vaccarin did not further increase, as indicating by the index of oxidative stress, cell viability, necroptosis and apoptosis. In conclusion, vaccarin can alleviate cisplatin-induced AKI via inhibiting NOX4.


6-Gingerol exerts a protective effect against hypoxic injury through the p38/Nrf2/HO-1 and p38/NF-κB pathway in H9c2 cells.

  • Xue Han‎ et al.
  • The Journal of nutritional biochemistry‎
  • 2022‎

Ginger, one of the most widely consumed condiment for various foods and beverages, has many pharmacological effects. 6-gingerol, a naturally occurring phenol, is one of the major pungent constituents of ginger. The purpose of this study was to characterize the effect of 6-gingerol on the p38/Nrf2/HO-1 and p38/NF-κB signaling pathway, as a possible means of combating hypoxia-related oxidative stress. H9c2 cells were chemically induced with CoCl2 to mimic hypoxia-associated cellular damage. Cardiomyocyte injury was assessed by lactate dehydrogenase and creatine kinase. Reactive oxygen species production was assessed by 2',7'-dichlorodihydrofluorescein diacetate. The antioxidative property of 6-gingerol was measured by estimating the activities of superoxide dismutase, catalase, glutathione and glutathione disulfide. Apoptosis was detected by flow cytometry after Annexin V-FITC-propidium iodide double staining. Western blotting was used to evaluate levels of p-p38, p38, cytoplasm p65, nuclear p65, total p65, nuclear Nrf2, total Nrf2, Keap1, HIF-1α, and HO-1. 6-gingerol was able to counter hypoxia-induced cardiomyocyte injury as evidenced by inhibiting the levels of oxidative stress indexes and increasing the percentage of apoptosis. Furthermore, 6-gingerol was able to down-regulate p-p38/p38, nuclear p65, total p65 and Keap1 expression induced by CoCl2 stimulation and increased cytoplasm p65, nuclear Nrf2, total Nrf2, HO-1, and HIF-1α expression. However, treatment with specific Nrf2 inhibitor blunted the activation of Nrf2 signaling and removed the protective effects of 6-gingerol. These experiments provide evidence that 6-gingerol exerts cytoprotective effects, which may be associated with the regulation of oxidative stress and apoptosis, potentially through activating the Nrf2 pathway and inhibiting the p38/NF-κB pathways.


8-Gingerol Ameliorates Myocardial Fibrosis by Attenuating Reactive Oxygen Species, Apoptosis, and Autophagy via the PI3K/Akt/mTOR Signaling Pathway.

  • Yucong Xue‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

8-gingerol (8-Gin) is the series of phenolic substance that is extracted from ginger. Although many studies have revealed that 8-Gin has multiple pharmacological properties, the possible underlying mechanisms of 8-Gin against myocardial fibrosis (MF) remains unclear. The study examined the exact role and potential mechanisms of 8-Gin against isoproterenol (ISO)-induced MF. Male mice were intraperitoneally injected with 8-Gin (10 and 20 mg/kg/d) and concurrently subcutaneously injected with ISO (10 mg/kg/d) for 2 weeks. Electrocardiography, pathological heart morphology, myocardial enzymes, reactive oxygen species (ROS) generation, degree of apoptosis, and autophagy pathway-related proteins were measured. Our study observed 8-Gin significantly reduced J-point elevation and heart rate. Besides, 8-Gin caused a marked decrease in cardiac weight index and left ventricle weight index, serum levels of creatine kinase and lactate dehydrogenase (CK and LDH, respectively), ROS generation, and attenuated ISO-induced pathological heart damage. Moreover, treatment with 8-Gin resulted in a marked decrease in the levels of collagen types I and III and TGF-β in the heart tissue. Our results showed 8-Gin exposure significantly suppressed ISO-induced autophagosome formation. 8-Gin also could lead to down-regulation of the activities of matrix metalloproteinases-9 (MMP-9), Caspase-9, and Bax protein, up-regulation of the activity of Bcl-2 protein, and alleviation of cardiomyocyte apoptosis. Furthermore, 8-Gin produced an obvious increase in the expressions of the PI3K/Akt/mTOR signaling pathway-related proteins. Our data showed that 8-Gin exerted cardioprotective effects on ISO-induced MF, which possibly occurred in connection with inhibition of ROS generation, apoptosis, and autophagy via modulation of the PI3K/Akt/mTOR signaling pathway.


Mechanistic investigation of the ameliorative effect of liquiritin on hypoxia/reoxygenation‑induced cardiomyocyte injury based on network pharmacology and in vitro validation.

  • Haoying Li‎ et al.
  • Experimental and therapeutic medicine‎
  • 2024‎

Liquiritin (LIQ) is a flavonoid known for its cardioprotective properties, extracted from Glycyrrhiza uralensis Fisch. The purpose of the present study was to investigate the protective mechanism of LIQ against hypoxia/reoxygenation (H/R) injury through in vitro experiments, with the goal of enhancing its pharmacological effects. Initially, network pharmacology was employed to explore the targets and mechanisms of LIQ. Subsequently, an in vitro H/R model was established using H9c2 cells. Potential targets for LIQ and myocardial ischemia-reperfusion injury (MIRI) were identified through online databases. The STRING, Cytoscape and DAVID databases were used to extract intersecting targets and mechanisms. In vitro experiments were conducted to validate these findings, assessing cardiac enzymes, oxidative stress indicators, mitochondrial fluorescence, apoptotic fluorescence, inflammation and related protein expression. The network pharmacological analysis revealed that the protective effects of LIQ on MIRI involve oxidative stress, inflammation and apoptosis. The results of in vitro experimental validation demonstrated that LIQ significantly reduced the activities of lactated dehydrogenase and creatine kinase isoenzyme-MB (P<0.05 or 0.01), as well as the level of malondialdehyde (P<0.01). It also inhibited the production of reactive oxygen species (P<0.01), the release of inflammatory factors (P<0.05 or 0.01) and apoptosis (P<0.01). By contrast, the LIQ pre-treatment group exhibited a significant increase in mitochondrial membrane potential level (P<0.05 or 0.01) and the activities of antioxidant enzymes superoxide dismutase, catalase and glutathione peroxidase (P<0.05 or 0.01). Furthermore, LIQ reduced the protein expressions of TNF-α receptor type 1 (TNFR1) and MMP9, along with the level of NF-κB phosphorylation (P<0.05 or 0.01). In conclusion, LIQ mitigated H/R-induced cardiomyocyte injury through mechanisms that may involve antioxidants, anti-apoptotic effects, protection against mitochondrial damage and suppression of inflammatory levels. These effects are achieved via inhibition of the TNFR1/NF-κB/MMP9 pathway.


Berberine Protects Against Simulated Ischemia/Reperfusion Injury-Induced H9C2 Cardiomyocytes Apoptosis In Vitro and Myocardial Ischemia/Reperfusion-Induced Apoptosis In Vivo by Regulating the Mitophagy-Mediated HIF-1α/BNIP3 Pathway.

  • Na Zhu‎ et al.
  • Frontiers in pharmacology‎
  • 2020‎

Berberine (BBR) has a variety of pharmacological activities and is widely used in Asian countries. However, the clinical application of BBR still lacks scientific basis, what protective mechanism of BBR against myocardial ischemia-reperfusion injury (MIRI). In vitro experiments, BBR pretreatment regulated autophagy-related protein expression, induced cell proliferation and autophagosome formation, and reduced the mitochondrial membrane potential (ΔΨm) increase in H9C2 cells. In vivo experiments, BBR reduced the myocardial infarct size, decreased cardiomyocyte apoptosis, and markedly decreased myocardial enzyme (CK-MB, LDH, and AST) activity-induced I/R. In addition, upon BNIP3 knockdown, the regulatory effects of BBR on the above indicators were weakened both in H9C2 cells and in vivo. Luciferase reporter and ChIP assays indicated that BBR mediated BNIP3 expression by enhancing the binding of HIF-1α to the BNIP3 promoter. BBR protects against myocardial I/R injury by inducing cardiomyocytes proliferation, inhibiting cardiomyocytes apoptosis, and inducing the mitophagy-mediated HIF-1α/BNIP3 pathway. Thus, BBR may serve as a novel therapeutic drug for myocardial I/R injury.


Protective effects of safranal on hypoxia/reoxygenation-induced injury in H9c2 cardiac myoblasts via the PI3K/AKT/GSK3β signaling pathway.

  • Hefei Wang‎ et al.
  • Experimental and therapeutic medicine‎
  • 2021‎

Safranal (SFR), an active ingredient extracted from saffron, exhibits a protective effect on the cardiovascular system. However, the mechanism of SFR against hypoxia/reoxygenation (H/R)-induced cardiomyocyte injury has previously not been investigated in vitro. The aim of the present study was therefore to observe the protective effects of SFR on H/R-induced cardiomyocyte injury and to explore its mechanisms. A H/R injury model of H9c2 cardiac myoblasts was established by administering 800 µmol/l CoCl2 to H9c2 cells for 24 h and reoxygenating the cells for 4 h to induce hypoxia. H9c2 cardiac myoblasts were pretreated with SFR for 12 h to evaluate the associated protective effects. A Cell Counting Kit-8 assay was used for cell viability detection, and the expression levels of lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB), glutathione peroxidase (GSH-px), catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA) and caspase-3, and the intracellular Ca2+ concentration were measured using the corresponding commercial kits. Levels of reactive oxygen species (ROS) in the cells were detected using 2,7-dichlorodihydrofluorescein diacetate. Flow cytometry was used to determine the degree of apoptosis and the level of mitochondrial membrane potential (MMP). Moreover, the expression levels of phosphorylated (p-)PI3K, AKT, p-AKT, glycogen synthase kinase 3β (GSK3β), p-GSK3β, Bcl-2, Bax, caspase-3 and cleaved caspase-3 were measured using western blot analysis. Results of the present study demonstrated that the H9c2 cardiac myoblasts treated with SFR exhibited significantly improved levels of viability and significantly reduced levels of ROS, compared with the H/R group. Furthermore, compared with the H/R group, SFR treatment significantly increased the MMP levels and antioxidant enzyme levels, including CAT, SOD and GSH-px; whereas the levels of CK-MB, LDH, MDA and intracellular Ca2+ concentration were significantly decreased. Moreover, the results of the present study demonstrated that SFR significantly reduced caspase-3, cleaved caspase-3 and Bax protein expression levels, but upregulated the Bcl-2 protein expression levels. SFR also increased the protein expressions of PI3K/AKT/GSK3β. In summary, the results suggested that SFR may exert a protective effect against H/R-induced cardiomyocyte injury, which occurs in connection with the inhibition of oxidative stress and apoptosis via regulation of the PI3K/AKT/GSK3β signaling pathway.


Ameliorative effects and mechanism of crocetin in arsenic trioxide‑induced cardiotoxicity in rats.

  • Zhifeng Zhao‎ et al.
  • Molecular medicine reports‎
  • 2020‎

Arsenic trioxide (ATO) is commonly used to treat patients with acute promyelocytic leukemia since it was authorized by the U.S. Food and Drug Administration in the 1970s, but its applicability has been limited by its cardiotoxic effects. Therefore, the aim of the present study was to investigate the cardioprotective effects and underlying mechanism of crocetin (CRT), the critical ingredient of saffron. Sprague‑Dawley rats were then randomly divided into four groups (n=10/group): i) Control group; ii) ATO group, iii) CRT‑low (20 mg/kg) group; and iv) CRT‑high (40 mg/kg) group. Rats in the Control and ATO groups were intraperitoneally injected with equal volumes of 0.9% sodium chloride solution, and CRT groups were administered with either 20 and 40 mg/kg CRT. Following 6 h, all groups except the Control group were intraperitoneally injected with 5 mg/kg ATO over 10 days. Cardiotoxicity was indicated by changes in electrocardiographic (ECG) patterns, morphology and marker enzymes. Histomorphological changes in the heart tissue were observed by pathological staining. The levels of superoxide dismutase, glutathione peroxidase, malondialdehyde and catalase in the serum were analyzed using colometric commercial assay kits, and the levels of reactive oxygen species in the heart tissue were detected using the fluorescent probe dihydroethidium. The expression levels of inflammatory factors and activities of apoptosis‑related proteins were analyzed using immunohistochemistry. The protein expression levels of silent information regulator of transcription 1 were measured using western blotting. Cardiotoxicity was induced in male Sprague‑Dawley rats with ATO (5 mg/kg). CRT (20 and 40 mg/kg) and ATO were co‑administered to evaluate possible cardioprotective effects. CRT significantly reduced the heart rate and J‑point elevation induced by ATO in rats. Histological changes were evaluated via hematoxylin and eosin staining. CRT decreased the levels of creatine kinase and lactate dehydrogenase, increased the activities of superoxide dismutase, glutathione‑peroxidase and catalase, and decreased the levels of malondialdehyde and reactive oxygen species. Moreover, CRT downregulated the expression levels of the pro‑inflammatory factors IL‑1, TNF‑α, IL‑6, Bax and p65, as well as increased the expression of Bcl‑2. It was also identified that CRT enhanced silent information regulator of transcription 1 protein expression. Thus, the present study demonstrated that CRT treatment effectively ameliorated ATO‑induced cardiotoxicity. The protective effects of CRT can be attributed to the inhibition of oxidative stress, inflammation and apoptosis. Therefore, CRT represents a promising therapeutic method for improving the cardiotoxic side effects caused by ATO treatment, and additional clinical applications are possible, but warrant further investigation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: