Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 143 papers

An ancient C-type lectin in Chlamys farreri (CfLec-2) that mediate pathogen recognition and cellular adhesion.

  • Jialong Yang‎ et al.
  • Developmental and comparative immunology‎
  • 2010‎

C-type lectins are a superfamily of Ca(2+) dependent carbohydrate-recognition proteins which play significant diverse roles in nonself-recognition and clearance of invaders. In the present study, a C-type lectin (CfLec-2) from Zhikong scallop Chlamys farreri was selected to investigate its functions in innate immunity. The mRNA expression of CfLec-2 in hemocytes was significantly up-regulated (P<0.01) after scallops were stimulated by LPS, PGN or β-glucan, and reached the highest expression level at 12h post-stimulation, which was 72.5-, 23.6- or 43.8-fold compared with blank group, respectively. The recombinant CfLec-2 (designated as rCfLec-2) could bind LPS, PGN, mannan and zymosan in vitro, but it could not bind β-glucan. Immunofluorescence assay with polyclonal antibody specific for CfLec-2 revealed that CfLec-2 was mainly located in the mantle, kidney and gonad. Furthermore, rCfLec-2 could bind to the surface of scallop hemocytes, and then initiated cellular adhesion and recruited hemocytes to enhance their encapsulation in vitro, and this process could be specifically blocked by anti-rCfLec-2 serum. These results collectively suggested that CfLec-2 from the primitive deuterostome C. farreri could perform two distinct immune functions, pathogen recognition and cellular adhesion synchronously, while these functions were performed by collectins and selectins in vertebrates, respectively. The synchronous functions of pathogen recognition and cellular adhesion performed by CfLec-2 tempted us to suspect that CfLec-2 was an ancient form of C-type lectin, and apparently the differentiation of these two functions mediated by C-type lectins occurred after mollusk in phylogeny.


Reduced expression of PTPRD correlates with poor prognosis in gastric adenocarcinoma.

  • Dandan Wang‎ et al.
  • PloS one‎
  • 2014‎

PTPRD, encoding protein tyrosine phosphatases receptor type D, is located at chromosome 9p23-24.1, a loci frequently lost in many types of tumors. Recently, PTPRD has been proposed to function as a tumor suppressor gene. The current study aimed to investigate PTPRD expression and its prognostic significance in primary gastric adenocarcinoma.


The immunomodulation mediated by a delta-opioid receptor for [Met(5)]-enkephalin in oyster Crassostrea gigas.

  • Zhaoqun Liu‎ et al.
  • Developmental and comparative immunology‎
  • 2015‎

Opioid receptors (OR) are a group of G protein-coupled receptors with opioids as ligands, which play an important role in triggering the second messengers to modulate immune response in vertebrate immunocytes. In the present study, the full length cDNA of a homologue of δ-opioid receptor (DOR) for [Met(5)]-enkaphalin was cloned from oyster Crassostrea gigas (designated as CgDOR), which was 1104 bp encoding a peptide of 367 amino acids containing a conserved 7tm_1 domain. After the stimulation of [Met(5)]-enkephalin, the concentration of second messengers Ca(2+) and cAMP in the HEK293T cells decreased significantly (p <0.05) with the expression of CgDOR. However, this trend was reverted with the addition of DOR antagonist BNTX. The CgDOR transcripts were ubiquitously detected in the tested tissues including haemocytes, gonad, mantle, kidney, gill, adductor muscle and hepatopancreas, with the highest expression level in the hepatopancreas. After LPS stimulation, the expression level of CgDOR mRNA began to increase (4.05-fold, p <0.05) at 6 h, and reached the highest level (5.00-fold, p <0.05) at 12 h. Haemocyte phagocytic and antibacterial activities increased significantly after [Met(5)]-enkephalin stimulation, whereas the increase was repressed with the addition of DOR antagonist BNTX. These results collectively suggested that CgDOR for [Met(5)]-enkephalin could modulate the haemocyte phagocytic and antibacterial functions through the second messengers Ca(2+) and cAMP, which might be requisite for pathogen elimination and homeostasis maintenance in oyster.


Adaptive Image Enhancement for Tracing 3D Morphologies of Neurons and Brain Vasculatures.

  • Zhi Zhou‎ et al.
  • Neuroinformatics‎
  • 2015‎

It is important to digitally reconstruct the 3D morphology of neurons and brain vasculatures. A number of previous methods have been proposed to automate the reconstruction process. However, in many cases, noise and low signal contrast with respect to the image background still hamper our ability to use automation methods directly. Here, we propose an adaptive image enhancement method specifically designed to improve the signal-to-noise ratio of several types of individual neurons and brain vasculature images. Our method is based on detecting the salient features of fibrous structures, e.g. the axon and dendrites combined with adaptive estimation of the optimal context windows where such saliency would be detected. We tested this method for a range of brain image datasets and imaging modalities, including bright-field, confocal and multiphoton fluorescent images of neurons, and magnetic resonance angiograms. Applying our adaptive enhancement to these datasets led to improved accuracy and speed in automated tracing of complicated morphology of neurons and vasculatures.


TReMAP: Automatic 3D Neuron Reconstruction Based on Tracing, Reverse Mapping and Assembling of 2D Projections.

  • Zhi Zhou‎ et al.
  • Neuroinformatics‎
  • 2016‎

Efficient and accurate digital reconstruction of neurons from large-scale 3D microscopic images remains a challenge in neuroscience. We propose a new automatic 3D neuron reconstruction algorithm, TReMAP, which utilizes 3D Virtual Finger (a reverse-mapping technique) to detect 3D neuron structures based on tracing results on 2D projection planes. Our fully automatic tracing strategy achieves close performance with the state-of-the-art neuron tracing algorithms, with the crucial advantage of efficient computation (much less memory consumption and parallel computation) for large-scale images.


A C1q domain containing protein from scallop Chlamys farreri serving as pattern recognition receptor with heat-aggregated IgG binding activity.

  • Leilei Wang‎ et al.
  • PloS one‎
  • 2012‎

The C1q domain containing (C1qDC) proteins refer to a family of all proteins that contain the globular C1q (gC1q) domain, and participate in a series of immune responses depending on their gC1q domains to bind a variety of self and non-self binding ligands.


Abnormal levels of histone methylation in the retinas of diabetic rats are reversed by minocycline treatment.

  • Wenjun Wang‎ et al.
  • Scientific reports‎
  • 2017‎

In this study we quantified the alterations of retinal histone post-translational modifications (PTMs) in diabetic rats using a liquid chromatography - tandem mass spectrometry (LC-MS/MS) approach. Some diabetic rats were subsequently treated with minocycline, a tetracycline antibiotic, which has been shown to inhibit the diabetes-induced chronic inflammation in the retinas of rodents. We quantified 266 differentially modified histone peptides, including 48 out of 83 methylation marks with significantly different abundancein retinas of diabetic rats as compared to non-diabetic controls. About 67% of these marks had their relative abundance restored to non-diabetic levels after minocycline treatment. Mono- and di-methylation states of histone H4 lysine 20 (H4K20me1/me2), markers related to DNA damage response, were found to be up-regulated in the retinas of diabetic rats and restored to control levels upon minocycline treatment. DNA damage response biomarkers showed the same pattern once quantified by western blotting. Collectively, this study indicates that alteration of some histone methylation levels is associated with the development of diabetic retinopathy in rodents, and the beneficial effect of minocycline on the retinas of diabetic rodents is partially through its ability to normalize the altered histone methylation levels.


An essential role of PI3K in the control of West Nile virus infection.

  • Leilei Wang‎ et al.
  • Scientific reports‎
  • 2017‎

The phosphatidyl-inositol-3 kinases (PI3K) pathway regulates a variety of cellular processes, including cell proliferation, RNA processing, protein translation, autophagy, apoptosis and antiviral immunity. Many viruses depend on PI3K signaling for replication. However, its role in flaviviral infection has not been clearly defined. Here we report that PI3K signaling is critical for the control of West Nile virus (WNV) infection by regulating type I IFN (IFN-I) response. Inhibition of PI3K activity by 3-methyl adenine (3-MA), Wortmannin (WM) and LY294002 (LY) increased viral titers by 3-16 folds in primary mouse macrophages, embryonic fibroblasts and human cell lines. Both 3-MA and LY repressed IFN-I mRNA and protein expression significantly. Surprisingly, WM enhanced the mRNA expression of IFN-I and TNF-α, and TNF-α protein production modestly, while dramatically decreased the secreted IFN-I. Further studies showed that the catalytic subunit p110δ of class I PI3K played a role in induction of antiviral immune responses. Lastly translocation of interferon regulatory factor 7(IRF7) from the cytosol to the nuclei was effectively blocked in the presence of PI3K inhibitors. Our results clearly define an antiviral role of PI3K by modulating immune responses and demonstrate differential mode of action of three PI3K inhibitors on IFN-I.


UBXN3B positively regulates STING-mediated antiviral immune responses.

  • Long Yang‎ et al.
  • Nature communications‎
  • 2018‎

The ubiquitin regulatory X domain-containing proteins (UBXNs) are likely involved in diverse biological processes. Their physiological functions, however, remain largely unknown. Here we present physiological evidence that UBXN3B positively regulates stimulator-of-interferon genes (STING) signaling. We employ a tamoxifen-inducible Cre-LoxP approach to generate systemic Ubxn3b knockout in adult mice as the Ubxn3b-null mutation is embryonically lethal. Ubxn3b-/-, like Sting-/- mice, are highly susceptible to lethal herpes simplex virus 1 (HSV-1) and vesicular stomatitis virus (VSV) infection, which is correlated with deficient immune responses when compared to Ubxn3b+/+ littermates. HSV-1 and STING agonist-induced immune responses are also reduced in several mouse and human Ubxn3b-/- primary cells. Mechanistic studies demonstrate that UBXN3B interacts with both STING and its E3 ligase TRIM56, and facilitates STING ubiquitination, dimerization, trafficking, and consequent recruitment and phosphorylation of TBK1. These results provide physiological evidence that links the UBXN family with antiviral immune responses.


Chromatin remodeler CHD7 regulates the stem cell identity of human neural progenitors.

  • MuhChyi Chai‎ et al.
  • Genes & development‎
  • 2018‎

Multiple congenital disorders often present complex phenotypes, but how the mutation of individual genetic factors can lead to multiple defects remains poorly understood. In the present study, we used human neuroepithelial (NE) cells and CHARGE patient-derived cells as an in vitro model system to identify the function of chromodomain helicase DNA-binding 7 (CHD7) in NE-neural crest bifurcation, thus revealing an etiological link between the central nervous system (CNS) and craniofacial anomalies observed in CHARGE syndrome. We found that CHD7 is required for epigenetic activation of superenhancers and CNS-specific enhancers, which support the maintenance of the NE and CNS lineage identities. Furthermore, we found that BRN2 and SOX21 are downstream effectors of CHD7, which shapes cellular identities by enhancing a CNS-specific cellular program and indirectly repressing non-CNS-specific cellular programs. Based on our results, CHD7, through its interactions with superenhancer elements, acts as a regulatory hub in the orchestration of the spatiotemporal dynamics of transcription factors to regulate NE and CNS lineage identities.


An integrated network pharmacology and RNA-Seq approach for exploring the preventive effect of Lonicerae japonicae flos on LPS-induced acute lung injury.

  • Chang Liu‎ et al.
  • Journal of ethnopharmacology‎
  • 2021‎

Lonicerae japonicae flos (LJF, the dried flower bud or newly bloomed flower of Lonicera japonica Thunb.), a typical herbal medicine, targets the lung, heart and stomach meridian with the function of clearing heat and detoxication. It ameliorated inflammatory responses and protected against acute lung inflammation in animal models. Acute lung injury (ALI) is a kind of inflammatory disease in which alveolar cells are damaged. However, a network pharmacology study to thoroughly investigate the mechanisms preventing ALI has not been performed.


Target delivering paclitaxel by ferritin heavy chain nanocages for glioma treatment.

  • Wei Liu‎ et al.
  • Journal of controlled release : official journal of the Controlled Release Society‎
  • 2020‎

Glioma is one of the most common aggressive brain malignancies, but the treatment of glioma is still far from satisfying. The efficiency of chemotherapy - the major choice of glioma treatment - is severely limited by low chemotherapeutic agents delivery across blood-brain barrier (BBB) and low tumor retention. Therefore, a safe and effective drug delivery system to help chemotherapy agents traverse the BBB and accumulate at tumor sites is urgently needed. Paclitaxel (PTX) is one of the most common and effective chemotherapy agent, however, it suffers from extremely low solubility and BBB penetration ability. Herein, we developed endogenous human ferritin heavy chain nanocage (HFn) as PTX carrier, which could specifically bind to widely overexpressed transferrin receptor 1 (TfR1) on BBB and glioma cells. We propose that this binding may help PTX cross the BBB and enhance its tumor accumulation. PTX-loaded HFn (HFn-PTX) was prepared and exhibited satisfactory targeting effect in Bend.3 and C6 cells in vitro. In vivo tissue biodistribution assay also demonstrated that HFn-PTX could indeed promote the accumulation of PTX in the brain. HFn-PTX exhibited the best anti-tumor effect with median survival time of 30 days, significantly longer than that of free PTX (14 days) and physiological saline group (13 days). In summary, we have designed and fabricated an effective delivery system for PTX to treat glioma. We also provided evidences that Transferrin (Tf) could not prevent the binding of HFn to TfR1 nor consequent TfR1-mediated HFn uptake, providing a clue for future research.


Cas12a Base Editors Induce Efficient and Specific Editing with Low DNA Damage Response.

  • Xiao Wang‎ et al.
  • Cell reports‎
  • 2020‎

The advent of base editors (BEs) holds great potential for correcting pathogenic-related point mutations to treat relevant diseases. However, Cas9 nickase (nCas9)-derived BEs lead to DNA double-strand breaks, which can trigger unwanted DNA damage response (DDR). Here, we show that the original version of catalytically dead Cas12a (dCas12a)-conjugated BEs induce a basal level of DNA breaks and minimally activate DDR proteins, including H2AX, ATM, ATR, and p53. By fusing dCas12a with engineered human apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3A (APOBEC3A), we further develop the BEACON (base editing induced by human APOBEC3A and Cas12a without DNA break) system to achieve enhanced deamination efficiency and editing specificity. Efficient C-to-T editing is achieved by BEACON in mammalian cells at levels comparable to AncBE4max, with only low levels of DDR and minimal RNA off-target mutations. Importantly, BEACON induces in vivo base editing in mouse embryos, and targeted C-to-T conversions are detected in F0 mice.


Flexible and Accurate Substrate Processing with Distinct Presenilin/γ-Secretases in Human Cortical Neurons.

  • Hirotaka Watanabe‎ et al.
  • eNeuro‎
  • 2021‎

Mutations in the presenilin genes (PS1, PS2) have been linked to the majority of familial Alzheimer's disease (AD). Although great efforts have been made to investigate pathogenic PS mutations, which ultimately cause an increase in the toxic form of β-amyloid (Aβ), the intrinsic physiological functions of PS in human neurons remain to be determined. In this study, to investigate the physiological roles of PS in human neurons, we generated PS1 conditional knock-out (KO) induced pluripotent stem cells (iPSCs), in which PS1 can be selectively abrogated under Cre transduction with or without additional PS2 KO. We showed that iPSC-derived neural progenitor cells (NPCs) do not confer a maintenance ability in the absence of both PS1 and PS2, showing the essential role of PS in Notch signaling. We then generated PS-null human cortical neurons, where PS1 was intact until full neuronal differentiation occurred. Aβ40 production was reduced exclusively in human PS1/PS2-null neurons along with a concomitant accumulation of amyloid β precursor protein (APP)-C-terminal fragments CTFs, whereas Aβ42 was decreased in neurons devoid of PS2 Unlike previous studies in mice, in which APP cleavage is largely attributable to PS1, γ-secretase activity seemed to be comparable between PS1 and PS2. In contrast, cleavage of another substrate, N-cadherin, was impaired only in neurons devoid of PS1 Moreover, PS2/γ-secretase exists largely in late endosomes/lysosomes, as measured by specific antibody against the γ-secretase complex, in which Aβ42 species are supposedly produced. Using this novel stem cell-based platform, we assessed important physiological PS1/PS2 functions in mature human neurons, the dysfunction of which could underlie AD pathogenesis.


An IncP-2 plasmid sublineage associated with dissemination of blaIMP-45 among carbapenem-resistant Pseudomonas aeruginosa.

  • Xuefei Zhang‎ et al.
  • Emerging microbes & infections‎
  • 2021‎

IMP-45, a variant of IMP-9, is one of the dominant metallo-β-lactamases (MBLs) in clinical carbapenem-resistant Pseudomonas aeruginosa (CRPA) isolates in China. The aim of this study was to investigate the distribution and mechanism of dissemination of blaIMP-45. MBL genes were detected by PCR in 173 non-duplicate CRPA isolates collected from Hospital HS in Shanghai and 605 P. aeruginosa isolates from a multicenter surveillance of blaIMP-45 in China. In total, 17 IMP-45-producers (14 from Hospital HS and 3 from other hospitals) were identified. Molecular typing identified an outbreak of 11 IMP-45-producing ST508 CRPA in the ICU of Hospital HS. Conjugation assays and whole genome sequencing were conducted among IMP-45-producers. Genomic comparison revealed that 16 blaIMP-45-carrying plasmids (9 from this study and 7 from GenBank) shared a similar backbone with IncP-2 blaIMP-9-carrying plasmid pOZ176 but lacked repA-oriV-parAB region. repA2 gene was presented in pOZ176, blaIMP-45-carrying plasmids (17 from this study and 7 from GenBank) and 15 megaplasmids from GenBank. Phylogenetic analysis of repA2 showed that most blaIMP-45-carrying plasmids were clustered into a sublineage separate from the one containing pOZ176. This IncP-2 plasmid sublineage contributed to the dissemination of blaIMP-45 among genetically diverse P. aeruginosa and recruited multiple resistance genes during its evolution.


Morphological diversity of single neurons in molecularly defined cell types.

  • Hanchuan Peng‎ et al.
  • Nature‎
  • 2021‎

Dendritic and axonal morphology reflects the input and output of neurons and is a defining feature of neuronal types1,2, yet our knowledge of its diversity remains limited. Here, to systematically examine complete single-neuron morphologies on a brain-wide scale, we established a pipeline encompassing sparse labelling, whole-brain imaging, reconstruction, registration and analysis. We fully reconstructed 1,741 neurons from cortex, claustrum, thalamus, striatum and other brain regions in mice. We identified 11 major projection neuron types with distinct morphological features and corresponding transcriptomic identities. Extensive projectional diversity was found within each of these major types, on the basis of which some types were clustered into more refined subtypes. This diversity follows a set of generalizable principles that govern long-range axonal projections at different levels, including molecular correspondence, divergent or convergent projection, axon termination pattern, regional specificity, topography, and individual cell variability. Although clear concordance with transcriptomic profiles is evident at the level of major projection type, fine-grained morphological diversity often does not readily correlate with transcriptomic subtypes derived from unsupervised clustering, highlighting the need for single-cell cross-modality studies. Overall, our study demonstrates the crucial need for quantitative description of complete single-cell anatomy in cell-type classification, as single-cell morphological diversity reveals a plethora of ways in which different cell types and their individual members may contribute to the configuration and function of their respective circuits.


Incidence and genetic variants of inborn errors of metabolism identified through newborn screening: A 7-year study in eastern coastal areas of China.

  • Shuai Men‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2023‎

The incidence of inborn errors of metabolism (IEM) varies across countries and areas. Currently, there are no studies on IEM using newborn screening (NBS) in eastern coastal areas of China. We aimed to estimate the incidence and genetic variants of IEM and understand the spectrum of diseases caused by IEM and variants among them in this area.


Web-Based Nomograms for Overall Survival and Cancer-Specific Survival of Bladder Cancer Patients with Bone Metastasis: A Retrospective Cohort Study from SEER Database.

  • Sheng Yang‎ et al.
  • Journal of clinical medicine‎
  • 2023‎

Our study aimed to explore the prognostic factors of bladder cancer with bone metastasis (BCBM) and develop prediction models to predict the overall survival (OS) and cancer-specific survival (CSS) of BCBM patients.


Platelet-Activating Biominerals Enhanced Injectable Hydrogels With Superior Bioactivity for Bone Regeneration.

  • Xin Chen‎ et al.
  • Frontiers in bioengineering and biotechnology‎
  • 2022‎

Refractory bone fracture, which is difficult to be treated, is a common clinical disease. Taking inspiration from the natural process of bone regeneration, we provide a biomimetic strategy to develop a new injectable biomaterial for repairing bone defects, which is mainly composed of platelets, fibrins, and biominerals. Biomineral nanoparticles (EACPNs) with an amorphous phase are prepared by an enzyme-catalyzed route and display a platelet-activating property. The composite hydrogel (EPH) of EACPNs, fibrins, and platelets is injectable, and has similar chemical properties to natural materials in bone regeneration. The dried EPH samples display a highly porous structure, which would be favorable for cell attachment and growth. The results from in vitro studies indicate that EPH has high biocompatibility and superior bioactivity in promoting the osteogenic differentiation of rat bone marrow stem cells (rBMSCs). Furthermore, the results from in vivo studies clearly indicate that EPH can induce the formation of new collagen and vessels in the defect area, thus leading to faster regeneration of bone defects at 2 weeks. Our study provides a strategy for designing new biomimetic materials, which may be favorable in the treatment of refractory bone fracture.


Generation of a control human induced pluripotent stem cell line using the defective and persistent Sendai virus vector system.

  • Zhi Zhou‎ et al.
  • Stem cell research‎
  • 2021‎

The defective and persistent Sendai virus (SeVdp) vector system allows efficient generation of transgene-free induced pluripotent stem cells (iPSCs) from human somatic cells. By leveraging the system, here we report the generation of an iPSC line from somatic fibroblasts of a healthy control donner (female), named KEIOi002-A (also named YG-iPS). The control iPSC line would be a useful resource for stem cell research and regenerative medicine.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: