Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 30 papers

Making sense: Dopamine activates conscious self-monitoring through medial prefrontal cortex.

  • Morten Joensson‎ et al.
  • Human brain mapping‎
  • 2015‎

When experiences become meaningful to the self, they are linked to synchronous activity in a paralimbic network of self-awareness and dopaminergic activity. This network includes medial prefrontal and medial parietal/posterior cingulate cortices, where transcranial magnetic stimulation may transiently impair self-awareness. Conversely, we hypothesize that dopaminergic stimulation may improve self-awareness and metacognition (i.e., the ability of the brain to consciously monitor its own cognitive processes). Here, we demonstrate improved noetic (conscious) metacognition by oral administration of 100 mg dopamine in minimal self-awareness. In a separate experiment with extended self-awareness dopamine improved the retrieval accuracy of memories of self-judgment (autonoetic, i.e., explicitly self-conscious) metacognition. Concomitantly, magnetoencephalography (MEG) showed increased amplitudes of oscillations (power) preferentially in the medial prefrontal cortex. Given that electromagnetic activity in this region is instrumental in self-awareness, this explains the specific effect of dopamine on explicit self-awareness and autonoetic metacognition.


The evidence for the physiological effects of lactate on the cerebral microcirculation: a systematic review.

  • Tristan R Hollyer‎ et al.
  • Journal of neurochemistry‎
  • 2019‎

Lactate's role in the brain is understood as a contributor to brain energy metabolism, but it may also regulate the cerebral microcirculation. The purpose of this systematic review was to evaluate evidence of lactate as a physiological effector within the normal cerebral microcirculation in reports ranging from in vitro experiments to in vivo studies in animals and humans. Following pre-registration of a review protocol, we systematically searched the PubMed, EMBASE, and Cochrane databases for literature covering themes of 'lactate', 'the brain', and 'microcirculation'. Abstracts were screened, and data extracted independently by two individuals. We excluded studies evaluating lactate in disease models. Twenty-eight papers were identified, 18 of which were in vivo animal experiments (65%), four on human studies (14%), and six on in vitro or ex vivo experiments (21%). Approximately half of the papers identified lactate as an augmenter of the hyperemic response to functional activation by a visual stimulus or as an instigator of hyperemia in a dose-dependent manner, without external stimulation. The mechanisms are likely to be coupled to NAD+ /NADH redox state influencing the production of nitric oxide. Unfortunately, only 38% of these studies demonstrated any control for bias, which makes reliable generalizations of the conclusions insecure. This systematic review identifies that lactate may act as a dose-dependent regulator of cerebral microcirculation by augmenting the hyperemic response to functional activation below 5 mmol/kg, and by initiating a hyperemic response above 5 mmol/kg. OPEN SCIENCE BADGES: This article has received a badge for *Pre-registration* because it made the data publicly available. The data can be accessed at www.radboudumc.nl/getmedia/53625326-d1df-432c-980f-27c7c80d1a90/THollyer_lactate_protocol.aspx. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Cortical volumes and atrophy rates in FTD-3 CHMP2B mutation carriers and related non-carriers.

  • Simon F Eskildsen‎ et al.
  • NeuroImage‎
  • 2009‎

Frontotemporal dementia constitutes the third most prevalent neurodegenerative disease with dementia. We compared cortical structural changes in nine presymptomatic CHMP2B frontotemporal dementia mutation positive individuals with seven mutation negative family members. Using serial MRI scans with a mean interval of 16 months and surface based cortical segmentation we measured cortical thickness and volume, and quantified atrophy rates. Cortical thickness and atrophy rates were averaged within major lobes and focal effects were determined by parametric statistical maps. The volumetric atrophy rates in the presymptomatic CHMP2B mutation carriers were statistically significant, though of a lower magnitude than those previously reported in patients of other types of frontotemporal dementia. Cortical thickness measurements revealed cortical thinning in mutation carriers bilaterally in the frontal and occipital lobes, and in the left temporal lobe. Results indicated that cortical thickness has a higher sensitivity for detecting small changes than whole-brain volumetric measures. Comparing mutation carriers with non-carriers revealed increased atrophy rates in mutation carriers bilaterally in the inferio-temporal cortex, the superior frontal cortex, and the insular cortex. These findings indicated impairment of regions involved in both behaviour and language. The symptoms previously reported in clinical CHMP2B frontotemporal dementia patients are associated with the anatomically affected regions here found in the presymptomatic mutation carriers.


Stroke infarct volume estimation in fixed tissue: Comparison of diffusion kurtosis imaging to diffusion weighted imaging and histology in a rodent MCAO model.

  • Vibeke Bay‎ et al.
  • PloS one‎
  • 2018‎

Diffusion kurtosis imaging (DKI) is a new promising MRI technique with microstructural sensitivity superior to conventional diffusion tensor (DTI) based methods. In stroke, considerable mismatch exists between the infarct lesion outline obtained from the two methods, kurtosis and diffusion tensor derived metrics. We aim to investigate if this mismatch can be examined in fixed tissue. Our investigation is based on estimates of mean diffusivity (MD) and mean (of the) kurtosis tensor (MKT) obtained using recent fast DKI methods requiring only 19 images. At 24 hours post stroke, rat brains were fixed and prepared. The infarct was clearly visible in both MD and MKT maps. The MKT lesion volume was roughly 31% larger than the MD lesion volume. Subsequent histological analysis (hematoxylin) revealed similar lesion volumes to MD. Our study shows that structural components underlying the MD/MKT mismatch can be investigated in fixed tissue and therefore allows a more direct comparison between lesion volumes from MRI and histology. Additionally, the larger MKT infarct lesion indicates that MKT do provide increased sensitivity to microstructural changes in the lesion area compared to MD.


More homogeneous capillary flow and oxygenation in deeper cortical layers correlate with increased oxygen extraction.

  • Baoqiang Li‎ et al.
  • eLife‎
  • 2019‎

Our understanding of how capillary blood flow and oxygen distribute across cortical layers to meet the local metabolic demand is incomplete. We addressed this question by using two-photon imaging of resting-state microvascular oxygen partial pressure (PO2) and flow in the whisker barrel cortex in awake mice. Our measurements in layers I-V show that the capillary red-blood-cell flux and oxygenation heterogeneity, and the intracapillary resistance to oxygen delivery, all decrease with depth, reaching a minimum around layer IV, while the depth-dependent oxygen extraction fraction is increased in layer IV, where oxygen demand is presumably the highest. Our findings suggest that more homogeneous distribution of the physiological observables relevant to oxygen transport to tissue is an important part of the microvascular network adaptation to local brain metabolism. These results will inform the biophysical models of layer-specific cerebral oxygen delivery and consumption and improve our understanding of the diseases that affect cerebral microcirculation.


Sural Nerve Perfusion in Mice.

  • Anete Dudele‎ et al.
  • Frontiers in neuroscience‎
  • 2020‎

Peripheral nerve function is metabolically demanding and nerve energy failure has been implicated in the onset and development of diabetic peripheral neuropathy and neuropathic pain conditions. Distal peripheral nerve oxygen supply relies on the distribution of red blood cells (RBCs) in just a few, nearby capillary-sized vessels and is therefore technically challenging to characterize. We developed an approach to characterize distal sural nerve hemodynamics in anesthetized, adult male mice using in vivo two-photon laser scanning microscopy. Our results show that RBC velocities in mouse sural nerve vessels are higher than those previously measured in mouse brain, and are sensitive to hindlimb temperatures. Nerve blood flow, measured as RBC flux, however, was similar to that of mouse brain and unaffected by local temperature. Power spectral density analysis of fluctuations in RBC velocities over short time intervals suggest that the technique is sufficiently sensitive and robust to detect subtle flow oscillations over time scales from 0.1 to tens of seconds. We conclude that in vivo two-photon laser scanning microscopy provides a suitable approach to study peripheral nerve hemodynamics in mice, and that local temperature control is important during such measurements.


Diffusion time dependence, power-law scaling, and exchange in gray matter.

  • Jonas L Olesen‎ et al.
  • NeuroImage‎
  • 2022‎

Characterizing neural tissue microstructure is a critical goal for future neuroimaging. Diffusion MRI (dMRI) provides contrasts that reflect diffusing spins' interactions with myriad microstructural features of biological systems. However, the specificity of dMRI remains limited due to the ambiguity of its signals vis-à-vis the underlying microstructure. To improve specificity, biophysical models of white matter (WM) typically express dMRI signals according to the Standard Model (SM) and have more recently in gray matter (GM) taken spherical compartments into account (the SANDI model) in attempts to represent cell soma. The validity of the assumptions underlying these models, however, remains largely undetermined, especially in GM. To validate these assumptions experimentally, observing their unique, functional properties, such as the b-1/2 power-law associated with one-dimensional diffusion, has emerged as a fruitful strategy. The absence of this signature in GM, in turn, has been explained by neurite water exchange, non-linear morphology, and/or by obscuring soma signal contributions. Here, we present diffusion simulations in realistic neurons demonstrating that curvature and branching does not destroy the stick power-law behavior in impermeable neurites, but also that their signal is drowned by the soma signal under typical experimental conditions. Nevertheless, by studying the GM dMRI signal's behavior as a function of diffusion weighting as well as time, we identify an attainable experimental regime in which the neurite signal dominates. Furthermore, we find that exchange-driven time dependence produces a signal behavior opposite to that which would be expected from restricted diffusion, thereby providing a functional signature that disambiguates the two effects. We present data from dMRI experiments in ex vivo rat brain at ultrahigh field of 16.4T and observe a time dependence that is consistent with substantial exchange but also with a GM stick power-law. The first finding suggests significant water exchange between neurites and the extracellular space while the second suggests a small sub-population of impermeable neurites. To quantify these observations, we harness the Kärger exchange model and incorporate the corresponding signal time dependence in the SM and SANDI models.


Altered Cerebral Microstructure in Adults With Atrial Septal Defect and Ventricular Septal Defect Repaired in Childhood.

  • Benjamin Asschenfeldt‎ et al.
  • Journal of the American Heart Association‎
  • 2022‎

Background Delayed brain development, brain injury, and neurodevelopmental disabilities are commonly observed in infants operated for complex congenital heart defect. Our previous findings of poorer neurodevelopmental outcomes in individuals operated for simple congenital heart defects calls for further etiological clarification. Hence, we examined the microstructural tissue composition in cerebral cortex and subcortical structures in comparison to healthy controls and whether differences were associated with neurodevelopmental outcomes. Methods and Results Adults (n=62) who underwent surgical closure of an atrial septal defect (n=33) or a ventricular septal defect (n=29) in childhood and a group of healthy, matched controls (n=38) were enrolled. Brain diffusional kurtosis imaging and neuropsychological assessment were performed. Cortical and subcortical tissue microstructure were assessed using mean kurtosis tensor and mean diffusivity and compared between groups and tested for associations with neuropsychological outcomes. Alterations in microstructural tissue composition were found in the parietal, temporal, and occipital lobes in the congenital heart defects, with distinct mean kurtosis tensor cluster-specific changes in the right visual cortex (pericalcarine gyrus, P=0.002; occipital part of fusiform and lingual gyri, P=0.019). Altered microstructural tissue composition in the subcortical structures was uncovered in atrial septal defects but not in ventricular septal defects. Associations were found between altered cerebral microstructure and social recognition and executive function. Conclusions Children operated for simple congenital heart defects demonstrated altered microstructural tissue composition in the cerebral cortex and subcortical structures during adulthood when compared with healthy peers. Alterations in cerebral microstructural tissue composition were associated with poorer neuropsychological performance. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT03871881.


Superior analgesic effect of an active distraction versus pleasant unfamiliar sounds and music: the influence of emotion and cognitive style.

  • Eduardo A Garza Villarreal‎ et al.
  • PloS one‎
  • 2012‎

Listening to music has been found to reduce acute and chronic pain. The underlying mechanisms are poorly understood; however, emotion and cognitive mechanisms have been suggested to influence the analgesic effect of music. In this study we investigated the influence of familiarity, emotional and cognitive features, and cognitive style on music-induced analgesia. Forty-eight healthy participants were divided into three groups (empathizers, systemizers and balanced) and received acute pain induced by heat while listening to different sounds. Participants listened to unfamiliar Mozart music rated with high valence and low arousal, unfamiliar environmental sounds with similar valence and arousal as the music, an active distraction task (mental arithmetic) and a control, and rated the pain. Data showed that the active distraction led to significantly less pain than did the music or sounds. Both unfamiliar music and sounds reduced pain significantly when compared to the control condition; however, music was no more effective than sound to reduce pain. Furthermore, we found correlations between pain and emotion ratings. Finally, systemizers reported less pain during the mental arithmetic compared with the other two groups. These findings suggest that familiarity may be key in the influence of the cognitive and emotional mechanisms of music-induced analgesia, and that cognitive styles may influence pain perception.


APOE gene-dependent BOLD responses to a breath-hold across the adult lifespan.

  • Peter M Rasmussen‎ et al.
  • NeuroImage. Clinical‎
  • 2019‎

Age and apolipoprotein E (APOE) e4 genotype are two of the strongest known risk factors for sporadic Alzheimer's disease (AD). Neuroimaging has shown hemodynamic response changes with age, in asymptomatic carriers of the APOE e4 allele, and in AD. In this study, we aimed to characterize and differentiate age- and APOE gene-specific hemodynamic changes to breath-hold and visual stimulation. A further aim was to study whether these responses were modulated by 3-day intake of nitrate, a nitric oxide (NO) source. The study was designed as a randomized, double-blinded, placebo-controlled crossover study, and the study cohort comprised 41 APOE e4 carriers (e3/e4 or e4/e4 genotype) and 40 non-carriers (e3/e3 genotype) aged 30-70 years at enrollment. The participants underwent two scanning sessions, each preceded by ingestion of sodium nitrate or sodium chloride (control). During functional magnetic resonance imaging (fMRI) sessions, participants performed two concurrent tasks; a breath-hold task to probe cerebrovascular reactivity and a visual stimulation task to evoke functional hyperemia, respectively. We found that the blood oxygenation level dependent (BOLD) hemodynamic response to breath-hold was altered in APOE e4 carriers relative to non-carriers. Mid-aged (50-60 years of age) e4 carriers exhibited a significantly increased peak time relative to mid-aged e3 carriers, and peak time for younger (30-40 years of age) e4 carriers was significantly shorter than that of mid-aged e4 carriers. The response width was significantly increased for e4 carriers. The response peak magnitude significantly decreased with age. For the visual stimulation task, we found age-related changes, with reduced response magnitude with age but no significant effect of APOE allele type. We found no effect of nitrate ingestion on BOLD responses evoked by the breath-hold and visual stimulation tasks. The APOE gene-dependent response to breath-hold may reflect NO-independent differences in vascular function.


Modeling the measurement bias in interstitial glucose concentrations derived from microdialysis in skeletal muscle.

  • Hugo Angleys‎ et al.
  • Physiological reports‎
  • 2022‎

Muscle tissue utilizes glucose as a fuel during exercise and stores glucose in form of glycogen during rest. The associated glucose transport includes delivery of glucose from blood plasma into the interstitial space and subsequent, GLUT-4 facilitated diffusion into muscle cells. The extent to which the vascular endothelium acts as a barrier to glucose transport, however, remains debated. While accurate measurements of interstitial glucose concentration (IGC) are key to resolve this debate, these are also challenging as removal of interstitial fluid may perturb glucose transport and therefore bias IGC measurements. We developed a three-compartment model to infer IGC in skeletal muscle from its local metabolism and blood flow. The model predicts that IGC remains within 5% of that of blood plasma during resting conditions but decreases more as metabolism increases. Next, we determined how microdialysis protocols affect IGC. Our model analysis suggests that microdialysis-based IGC measurements underestimate true values. Notably, reported increases in muscle capillary permeability surface area product (PS) to glucose under the condition of elevated metabolism may owe in part to such measurements bias. Our study demonstrates that microdialysis may be associated with significant measurement bias in the context of muscle IGC assessment. Reappraising literature data with this bias in mind, we find that muscle capillary endothelium may represent less of a barrier to glucose transport in muscle than previously believed. We discuss the impact of glucose removal on the microdialysis relative recovery and means of correcting microdialysis IGC values.


Abnormal Left-Hemispheric Sulcal Patterns in Adults With Simple Congenital Heart Defects Repaired in Childhood.

  • Benjamin Asschenfeldt‎ et al.
  • Journal of the American Heart Association‎
  • 2021‎

Background Children operated on for a simple congenital heart defect (CHD) are at risk of neurodevelopmental abnormalities. Abnormal cortical development and folding have been observed in fetuses with CHD. We examined whether sulcal folding patterns in adults operated on for simple CHD in childhood differ from those of healthy controls, and whether such differences are associated with neuropsychological outcomes. Methods and Results Patients (mean age, 24.5 years) who underwent childhood surgery for isolated atrial septal defect (ASD; n=33) or ventricular septal defect (VSD; n=30) and healthy controls (n=37) were enrolled. Sulcal pattern similarity to healthy controls was determined using magnetic resonance imaging and looking at features of sulcal folds, their intersulcal relationships, and sulcal graph topology. The sulcal pattern similarity values were tested for associations with comprehensive neuropsychological scores. Patients with both ASD and VSD had decreased sulcal pattern similarity in the left hemisphere compared with controls. The differences were found in the left temporal lobe in the ASD group and in the whole left hemisphere in the VSD group (P=0.033 and P=0.039, respectively). The extent of abnormal left hemispheric sulcal pattern similarity was associated with worse neuropsychological scores (intelligence, executive function, and visuospatial abilities) in the VSD group, and special educational support in the ASD group. Conclusions Adults who underwent surgery for simple CHD in childhood display altered left hemisphere sulcal folding patterns, commensurate with neuropsychological scores for patients with VSD and special educational support for ASD. This may indicate that simple CHD affects early brain development. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT03871881.


Bayesian modeling of Dynamic Contrast Enhanced MRI data in cerebral glioma patients improves the diagnostic quality of hemodynamic parameter maps.

  • Anna Tietze‎ et al.
  • PloS one‎
  • 2018‎

The purpose of this work is to investigate if the curve-fitting algorithm in Dynamic Contrast Enhanced (DCE) MRI experiments influences the diagnostic quality of calculated parameter maps.


Comprehensive Evaluation of Cerebral Hemodynamics and Oxygen Metabolism in Revascularization of Asymptomatic High-Grade Carotid Stenosis.

  • Bernardo Crespo Pimentel‎ et al.
  • Clinical neuroradiology‎
  • 2022‎

Revascularization procedures in carotid artery stenosis have shown a positive effect in the restoration of cerebral oxygen metabolism as assessed by T2' (T2 prime) imaging as well as capillary homeostasis by measurement of capillary transit time heterogeneity (CTH); however, data in patients with asymptomatic carotid stenosis without manifest brain lesions are scarce.


Diffusion tensor imaging detects early cerebral cortex abnormalities in neuronal architecture induced by bilateral neonatal enucleation: an experimental model in the ferret.

  • Andrew S Bock‎ et al.
  • Frontiers in systems neuroscience‎
  • 2010‎

Diffusion tensor imaging (DTI) is a technique that non-invasively provides quantitative measures of water translational diffusion, including fractional anisotropy (FA), that are sensitive to the shape and orientation of cellular elements, such as axons, dendrites and cell somas. For several neurodevelopmental disorders, histopathological investigations have identified abnormalities in the architecture of pyramidal neurons at early stages of cerebral cortex development. To assess the potential capability of DTI to detect neuromorphological abnormalities within the developing cerebral cortex, we compare changes in cortical FA with changes in neuronal architecture and connectivity induced by bilateral enucleation at postnatal day 7 (BEP7) in ferrets. We show here that the visual callosal pattern in BEP7 ferrets is more irregular and occupies a significantly greater cortical area compared to controls at adulthood. To determine whether development of the cerebral cortex is altered in BEP7 ferrets in a manner detectable by DTI, cortical FA was compared in control and BEP7 animals on postnatal day 31. Visual cortex, but not rostrally adjacent non-visual cortex, exhibits higher FA than control animals, consistent with BEP7 animals possessing axonal and dendritic arbors of reduced complexity than age-matched controls. Subsequent to DTI, Golgi-staining and analysis methods were used to identify regions, restricted to visual areas, in which the orientation distribution of neuronal processes is significantly more concentrated than in control ferrets. Together, these findings suggest that DTI can be of utility for detecting abnormalities associated with neurodevelopmental disorders at early stages of cerebral cortical development, and that the neonatally enucleated ferret is a useful animal model system for systematically assessing the potential of this new diagnostic strategy.


Capillary Transit Time Heterogeneity Is Associated with Modified Rankin Scale Score at Discharge in Patients with Bilateral High Grade Internal Carotid Artery Stenosis.

  • Sibu Mundiyanapurath‎ et al.
  • PloS one‎
  • 2016‎

Perfusion weighted imaging (PWI) is inherently unreliable in patients with severe perfusion abnormalities. We compared the diagnostic accuracy of a novel index of microvascular flow-patterns, so-called capillary transit time heterogeneity (CTH) to that of the commonly used delay parameter Tmax in patients with bilateral high grade internal carotid artery stenosis (ICAS).


Diffusion-weighted MRI and quantitative biophysical modeling of hippocampal neurite loss in chronic stress.

  • Peter Vestergaard-Poulsen‎ et al.
  • PloS one‎
  • 2011‎

Chronic stress has detrimental effects on physiology, learning and memory and is involved in the development of anxiety and depressive disorders. Besides changes in synaptic formation and neurogenesis, chronic stress also induces dendritic remodeling in the hippocampus, amygdala and the prefrontal cortex. Investigations of dendritic remodeling during development and treatment of stress are currently limited by the invasive nature of histological and stereological methods. Here we show that high field diffusion-weighted MRI combined with quantitative biophysical modeling of the hippocampal dendritic loss in 21 day restraint stressed rats highly correlates with former histological findings. Our study strongly indicates that diffusion-weighted MRI is sensitive to regional dendritic loss and thus a promising candidate for non-invasive studies of dendritic plasticity in chronic stress and stress-related disorders.


Neuropsychological Status and Structural Brain Imaging in Adults With Simple Congenital Heart Defects Closed in Childhood.

  • Benjamin Asschenfeldt‎ et al.
  • Journal of the American Heart Association‎
  • 2020‎

Background Neurodevelopmental impairments are common in survivors of complex congenital heart defects (CHD). We report neuropsychological and brain imaging assessments in adults operated for isolated septal defects. Methods and Results Patients (mean age 25.6 yrs) who underwent childhood surgery for isolated atrial septal defect (n=34) or ventricular septal defect (n=32), and healthy matched peers (n=40), underwent a standard battery of neuropsychological tests and a 3.0T brain magnetic resonance imaging scan. Patient intelligence was affected with lower scores on Full-Scale intelligence quotient (P<0.001), Verbal Comprehension (P<0.001), Perceptual Reasoning (P=0.007), and Working Memory (P<0.001) compared with controls. Also, the CHD group had poorer visuospatial abilities (Immediate Recall, P=0.033; Delayed Recall, P=0.018), verbal memory (Trial 1, P=0.015; Total Learning, P<0.001; Delayed Recall, P=0.007), executive function (Executive Composite Score, P<0.001), and social recognition (Reading the Mind in the Eyes Test, P=0.002) compared with controls. Self-reported levels of executive dysfunction, attention deficits and hyperactivity behavior, and social cognition dysfunction were higher in the CHD group compared with population means and controls. We found similar global and regional morphometric brain volumes and a similar frequency of brain magnetic resonance imaging abnormalities in the 2 groups. The CHD group had a high occurrence of psychiatric disease and a larger need for special teaching during school age. Conclusions Children operated for simple CHD demonstrate poorer neurodevelopmental outcomes in adulthood when compared with healthy controls and expected population means. REGISTRATION URL: https://www.clini​caltr​ials.gov. Unique identifier: NCT03871881.


Hippocampal Atrophy Following Subarachnoid Hemorrhage Correlates with Disruption of Astrocyte Morphology and Capillary Coverage by AQP4.

  • Maryam Anzabi‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2018‎

Despite successful management of ruptured intracranial aneurysm following subarachnoid hemorrhage (SAH), delayed cerebral ischemia (DCI) remains the main cause of high mortality and morbidity in patients who survive the initial bleeding. Astrocytes play a key role in neurovascular coupling. Therefore, changes in the neurovascular unit including astrocytes following SAH may contribute to the development of DCI and long-term complications. In this study, we characterized morphological changes in hippocampal astrocytes following experimental SAH, with special emphasis on glia-vascular cross-talk and hippocampal volume changes. Four days after induction of SAH or sham-operation in mice, their hippocampal volumes were determined by magnetic resonance imaging (MRI) and histological/stereological methods. Glial fibrillary acid protein (GFAP) immunostained hippocampal sections were examined by stereological techniques to detect differences in astrocyte morphology, and global spatial sampling method was used to quantify the length density of Aquaporin-4 (AQP4) positive capillaries. Our results indicated that hippocampal volume, as measured both by MRI and by histological approaches, was significantly lower in SAH animals than in the sham-operated group. Accordingly, in this animal model of SAH, hippocampal atrophy existed already at the time of DCI onset in humans. SAH induced retraction of GFAP positive astrocyte processes, accompanied by a significant reduction in the length density of AQP4 positive capillaries as well as narrowing of hippocampal capillaries. Meanwhile, astrocyte volume was higher in SAH mice compared with the sham-operated group. Morphological changes in hippocampal astrocytes seemingly disrupt glia-vascular interactions early after SAH and may contribute to hippocampal atrophy. We speculate that astrocytes and astrocyte-capillary interactions may provide targets for the development of therapies to improve the prognosis of SAH.


Locus coeruleus ablation in mice: protocol optimization, stereology and behavioral impact.

  • Nanna Bertin Markussen‎ et al.
  • Frontiers in cellular neuroscience‎
  • 2023‎

The Locus Coeruleus (LC) is in the brainstem and supplies key brain structures with noradrenaline, including the forebrain and hippocampus. The LC impacts specific behaviors such as anxiety, fear, and motivation, as well as physiological phenomena that impact brain functions in general, including sleep, blood flow regulation, and capillary permeability. Nevertheless, the short- and long-term consequences of LC dysfunction remain unclear. The LC is among the brain structures first affected in patients suffering from neurodegenerative diseases such as Parkinson's disease and Alzheimer's Disease, hinting that LC dysfunction may play a central role in disease development and progression. Animal models with modified or disrupted LC function are essential to further our understanding of LC function in the normal brain, the consequences of LC dysfunction, and its putative roles in disease development. For this, well-characterized animal models of LC dysfunction are needed. Here, we establish the optimal dose of selective neurotoxin N-(2-chloroethyl)-N-ethyl-bromo-benzylamine (DSP-4) for LC ablation. Using histology and stereology, we compare LC volume and neuron number in LC ablated (LCA) mice and controls to assess the efficacy of LC ablation with different numbers of DSP-4 injections. All LCA groups show a consistent decrease in LC cell count and LC volume. We then proceed to characterize the behavior of LCA mice using a light-dark box test, Barnes maze test, and non-invasive sleep-wakefulness monitoring. Behaviorally, LCA mice differ subtly from control mice, with LCA mice generally being more curious and less anxious compared to controls consistent with known LC function and projections. We note an interesting contrast in that control mice have varying LC size and neuron count but consistent behavior whereas LCA mice (as expected) have consistently sized LC but erratic behavior. Our study provides a thorough characterization of an LC ablation model, firmly consolidating it as a valid model system for the study of LC dysfunction.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: