Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 540 papers

Epinephrine-induced Ca2+ influx in vascular endothelial cells is mediated by CNGA2 channels.

  • Bing Shen‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2008‎

Epinephrine, through its action on beta-adrenoceptors, may induce endothelium-dependent vascular dilation, and this action is partly mediated by a cytosolic Ca(2+) ([Ca(2+)](i)) change in endothelial cells. In the present study, we explored the molecular identity of the channels that mediate epinephrine-induced endothelial Ca(2+) influx and subsequent vascular relaxation. Patch clamp recorded an epinephrine- and cAMP-activated cation current in the primary cultured bovine aortic endothelial cells (BAECs) and H5V endothelial cells. L-cis-diltiazem and LY-83583, two selective inhibitors for cyclic nucleotide-gated channels, diminished this cation current. Furthermore, this cation current was greatly reduced by a CNGA2-specific siRNA in H5V cells. With the use of fluorescent Ca(2+) dye, it was found that epinephrine and isoprenaline, a beta-adrenoceptor agonist, induced endothelial Ca(2+) influx in the presence of bradykinin. This Ca(2+) influx was inhibited by L-cis-diltiazem and LY-83583, and by a beta(2)-adrenoceptor antagonist ICI-118551. CNGA2-specific siRNA also diminished this Ca(2+) influx in H5V cells. Furthermore, L-cis-diltiazem and LY-83583 inhibited the endothelial Ca(2+) influx in isolated mouse aortic strips. L-cis-diltiazem also markedly reduced the endothelium-dependent vascular dilation to isoprenaline in isolated mouse aortic segments. In summary, CNG channels, CNGA2 in particular, mediate beta-adrenoceptor agonist-induced endothelial Ca(2+) influx and subsequent vascular dilation.


Hypocholesterolemic activity of grape seed proanthocyanidin is mediated by enhancement of bile acid excretion and up-regulation of CYP7A1.

  • Rui Jiao‎ et al.
  • The Journal of nutritional biochemistry‎
  • 2010‎

Interest in grape seed proanthocyanidin (GSP) as a cholesterol-lowering nutraceutical is growing. This study was to investigate the effect of GSP on blood cholesterol level and gene expression of cholesterol-regulating enzymes in Golden Syrian hamsters maintained on a 0.1% cholesterol diet. Results affirmed supplementation of 0.5% or 1.0% GSP could decrease plasma total cholesterol and triacylglycerol level. Western blot and real-time polymerase chain reaction analyses demonstrated GSP did not affect sterol regulatory element binding protein-2 and low-density lipoprotein receptor; however, it increased mRNA 3-hydroxy-3-methylglutaryl coenzyme A reductase. GSP had no effect on the protein mass of liver X receptor alpha (LXRα) but it decreased mRNA LXRα. Most importantly, GSP increased not only the protein level of cholesterol-7α-hydroxylase (CYP7A1) but also mRNA CYP7A1. It was concluded that the hypocholesterolemic activity of GSP was most likely mediated by enhancement of bile acid excretion and up-regulation of CYP7A1.


Methylation of WTH3, a possible drug resistant gene, inhibits p53 regulated expression.

  • Kegui Tian‎ et al.
  • BMC cancer‎
  • 2008‎

Previous results showed that over-expression of the WTH3 gene in MDR cells reduced MDR1 gene expression and converted their resistance to sensitivity to various anticancer drugs. In addition, the WTH3 gene promoter was hypermethylated in the MCF7/AdrR cell line and primary drug resistant breast cancer epithelial cells. WTH3 was also found to be directly targeted and up regulated by the p53 gene. Furthermore, over expression of the WTH3 gene promoted the apoptotic phenotype in various host cells.


Role of the novel HSP90 inhibitor AUY922 in hepatocellular carcinoma: Potential for therapy.

  • Wei Cheng‎ et al.
  • Molecular medicine reports‎
  • 2015‎

The aim of the present study was to determine the correlation between hepatocellular carcinoma (HCC) and heat shock protein 90 (HSP90), involved in tumor angiogenesis, and to evaluate the effect of AUY922, a HSP90 inhibitor, in HCC. The expression of HSP90 and microvessel density (MVD) were measured in tissue samples from 76 patients with HCC by immunohistochemistry. Western blot analysis was performed to detect the expression of HSP90 in the HCC tissues and different HCC cell lines. The effects of time and concentration treatment with the AUY922 HSP90 inhibitor were investigated in HepG2 cells. Cell proliferation was measured using an MTT assay and a Transwell assay was performed to evaluate the migration of the HepG2 cells following treatment with different concentrations of AUY922. Positive staining of HSP90 was observed in 88.16% (67/76) of the HCC tissues, compared with 16.67% (4/24) of the normal tissues. The difference in the expression of HSP90 between the HCC and normal tissues was statistically significant (P<0.001). Tumors exhibiting positive expression of HSP90 had significantly higher MVD compared with the HSP90-negative counterparts (82.8 ± 12.44 vs. 23.8 ± 8.07, respectively; P<0.001). The expression levels of HSP90 were positively correlated with MVD in all the tissue samples (r_s=0.724; P<0.001). AUY922 inhibited the proliferation of the HepG2 cells in a time-and concentration-dependent manner, and the migration of HepG2 cells was distinctly suppressed following treatment with AUY922. These data suggested that the angiogenesis of human HCC may be mediated by HSP90, and that the specific HSP90 inhibitor, AUY922, has a therapeutic role in the treatment of HCC. Therefore, HSP90 may represent a selective target in molecularly targeted treatment of HCC.


Black tea protects against hypertension-associated endothelial dysfunction through alleviation of endoplasmic reticulum stress.

  • Wai San Cheang‎ et al.
  • Scientific reports‎
  • 2015‎

Hypertensive patients have been found to be associated with elevated levels of homocysteine, known as hyperhomocysteinemia. Homocysteine (Hcy) can induce endoplasmic reticulum (ER) stress in endothelial cells. This study aims to investigate whether black tea (BT) protects against hypertension-associated endothelial dysfunction through alleviation of ER stress. Rat aortae and cultured rat aortic endothelial cells were treated with Hcy, BT extract, and theaflavin-3,3'-digallate (TF3). Male Sprague Dawley rats were infused with angiotensin II (Ang II) to induce hypertension and orally administrated with BT extract at 15 mg/kg/day for 2 weeks. Hcy impaired endothelium-dependent relaxations of rat aortae and led to ER stress in endothelial cells, which were ameliorated by co-incubation of BT extract and TF3. The blood pressure of Ang II-infused rats and plasma Hcy level were normalized by BT consumption. Impaired endothelium-dependent relaxations in renal arteries, carotid arteries and aortae, and flow-mediated dilatations in third-order mesenteric resistance arteries were improved. Elevations of ER stress markers and ROS level, plus down-regulation of Hcy metabolic enzymes in aortae from Ang II-infused rats were prevented by BT treatment. Our data reveal the novel cardiovascular benefits of BT in ameliorating vascular dysfunctions, providing insight into developing BT into beneficial dietary supplements in hypertensive patients.


Distinct role of FoxO1 in M-CSF- and GM-CSF-differentiated macrophages contributes LPS-mediated IL-10: implication in hyperglycemia.

  • Sangwoon Chung‎ et al.
  • Journal of leukocyte biology‎
  • 2015‎

Macrophages are a heterogeneous population of immune cells that are essential for the initiation and containment inflammation. There are 2 well-established populations of inflammatory macrophages: classically activated M1 and alternatively activated M2 macrophages. The FoxO family of transcription factors plays key roles in a number of cellular processes, including cell growth, metabolism, survival, and inflammation. In this study, we determined whether the expression of FoxO1 contributes polarization of macrophages toward the M2-like phenotype by enhancing IL-10 cytokine expression. We identified that FoxO1 is highly expressed in M-CSF-derived (M2-like) macrophage subsets, and this M2-like macrophages showed a preferential FoxO1 enrichment on the IL-10 promoter but not in GM-CSF-derived (M1-like) macrophages during classic activation by LPS treatment, which suggests that FoxO1 enhances IL-10 by binding directly to the IL-10 promoter, especially in BMMs. In addition, our data show that macrophages in the setting of hyperglycemia contribute to the macrophage-inflammatory phenotype through attenuation of the contribution of FoxO1 to activate IL-10 expression. Our data identify a novel role for FoxO1 in regulating IL-10 secretion during classic activation and highlight the potential for therapeutic interventions for chronic inflammatory conditions, such as atherosclerosis, diabetes, inflammatory bowel disease, and arthritis.


Effects of progesterone on glutamate transporter 2 and gamma-aminobutyric acid transporter 1 expression in the developing rat brain after recurrent seizures.

  • Lingjuan Liu‎ et al.
  • Neural regeneration research‎
  • 2012‎

Seizures were induced by flurothyl inhalation. Rats were intramuscularly treated with progesterone after each seizure. Results demonstrated that glutamate transporter 2 and γ-aminobutyric acid transporter 1 expression levels were significantly increased in the cerebral cortex and hippocampus of the developing rat brain following recurrent seizures. After progesterone treatment, glutamate transporter 2 protein expression was upregulated, but γ-aminobutyric acid transporter 1 levels decreased. These results suggest that glutamate transporter 2 and γ-aminobutyric acid transporter 1 are involved in the pathological processes of epilepsy. Progesterone can help maintain a balance between excitatory and inhibitory systems by modulating the amino acid transporter system, and protect the developing brain after recurrent seizures.


Peroxisome Proliferator-Activated Receptor γ Regulates the Expression of Lipid Phosphate Phosphohydrolase 1 in Human Vascular Endothelial Cells.

  • Yazi Huang‎ et al.
  • PPAR research‎
  • 2014‎

Lipid phosphate phosphohydrolase 1 (LPP1), a membrane ectophosphohydrolase regulating the availability of bioactive lipid phosphates, plays important roles in cellular signaling and physiological processes such as angiogenesis and endothelial migration. However, the regulated expression of LPP1 remains largely unknown. Here, we aimed to examine a role of peroxisome proliferator-activated receptor γ (PPAR γ ) in the transcriptional control of LPP1 gene expression. In human umbilical vein endothelial cells (HUVECs), quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) demonstrated that activation of PPAR γ increased the mRNA level of LPP1. Chromatin immunoprecipitation assay showed that PPAR γ binds to the putative PPAR-responsive elements (PPREs) within the 5'-flanking region of the human LPP1 gene. Genomic fragment containing 1.7-kilobase of the promoter region was cloned by using PCR. The luciferase reporter assays demonstrated that overexpression of PPAR γ and rosiglitazone, a specific ligand for PPAR γ , could significantly upregulate the reporter activity. However, site-directed mutagenesis of the PPRE motif abolished the induction. In conclusion, our results demonstrated that PPAR γ transcriptionally activated the expression of LPP1 gene in ECs, suggesting a potential role of PPAR γ in the metabolism of phospholipids.


Do KV 7.1 channels contribute to control of arterial vascular tone?

  • Dmitry Tsvetkov‎ et al.
  • British journal of pharmacology‎
  • 2017‎

KV 7.1 voltage-gated potassium channels are expressed in vascular smooth muscle cells (VSMC) of diverse arteries, including mesenteric arteries. Based on pharmacological evidence using R-L3 (KV 7.1 channel opener), HMR1556, chromanol 293B (KV 7.1 channel blockers), stimulation of these channels has been suggested to evoke profound relaxation in various vascular beds of rats. However, the specificity of these drugs in vivo is uncertain.


Oleanolic acid ameliorates high glucose-induced endothelial dysfunction via PPARδ activation.

  • Zihui Zhang‎ et al.
  • Scientific reports‎
  • 2017‎

Oleanolic acid (3β-hydroxyolean-12-en-28-oic acid, OA) is a pentacyclic triterpenes widely distributed in food, medicinal plants and nutritional supplements. OA exhibits various pharmacological properties, such as hepatoprotective and anti-tumor effects. In this study, we analyzed the effect of OA on endothelial dysfunction induced by high glucose in human vascular endothelial cells (ECs). Western blotting showed that OA attenuated high glucose-reduced nitric production oxide (NO) as well as Akt-Ser473 and eNOS-Ser1177 phosphorylation in cultured human umbilical vein ECs (HUVECs). Next, luciferase reporter assay showed that OA activated peroxisome proliferators-activated receptor δ (PPARδ) activity. Quantitative reverse transcriptase PCR (qRT-PCR) demonstrated that OA increased the expressions of PPARδ target genes (PDK4, ADRP and ANGPTL4) in ECs. Meanwhile, the induced expressions of PDK4, ADRP and ANGPTL4 by OA were inhibited by GSK0660, a specific antagonist of PPARδ. In addition, inhibition of PPARδ abolished OA-induced the Akt-Ser473 and eNOS-Ser1177 phosphorylation, and NO production. Finally, by using Multi Myograph System, we showed that OA prevented high glucose-impaired vasodilation. This protective effect on vasodilation was inhibited in aortic rings pretreated with GSK0660. Collectively, we demonstrated that OA improved high glucose-impaired endothelial function via a PPARδ-mediated mechanism and through eNOS/Akt/NO pathway.


p53 isoform Δ133p53 promotes efficiency of induced pluripotent stem cells and ensures genomic integrity during reprogramming.

  • Lu Gong‎ et al.
  • Scientific reports‎
  • 2016‎

Human induced pluripotent stem (iPS) cells have great potential in regenerative medicine, but this depends on the integrity of their genomes. iPS cells have been found to contain a large number of de novo genetic alterations due to DNA damage response during reprogramming. Thus, to maintain the genetic stability of iPS cells is an important goal in iPS cell technology. DNA damage response can trigger tumor suppressor p53 activation, which ensures genome integrity of reprogramming cells by inducing apoptosis and senescence. p53 isoform Δ133p53 is a p53 target gene and functions to not only antagonize p53 mediated apoptosis, but also promote DNA double-strand break (DSB) repair. Here we report that Δ133p53 is induced in reprogramming. Knockdown of Δ133p53 results 2-fold decrease in reprogramming efficiency, 4-fold increase in chromosomal aberrations, whereas overexpression of Δ133p53 with 4 Yamanaka factors showes 4-fold increase in reprogamming efficiency and 2-fold decrease in chromosomal aberrations, compared to those in iPS cells induced only with 4 Yamanaka factors. Overexpression of Δ133p53 can inhibit cell apoptosis and promote DNA DSB repair foci formation during reprogramming. Our finding demonstrates that the overexpression of Δ133p53 not only enhances reprogramming efficiency, but also results better genetic quality in iPS cells.


Differential effects of cystathionine-γ-lyase-dependent vasodilatory H2S in periadventitial vasoregulation of rat and mouse aortas.

  • Carolin Köhn‎ et al.
  • PloS one‎
  • 2012‎

Hydrogen sulfide (H(2)S) is a potent vasodilator. However, the complex mechanisms of vasoregulation by H(2)S are not fully understood. We tested the hypotheses that (1) H(2)S exerts vasodilatory effects by opening KCNQ-type voltage-dependent (K(v)) K(+) channels and (2) that H(2)S-producing cystathionine-γ-lyase (CSE) in perivascular adipose tissue plays a major role in this pathway.


The g0/g1 switch gene 2 is an important regulator of hepatic triglyceride metabolism.

  • Yinfang Wang‎ et al.
  • PloS one‎
  • 2013‎

Nonalcoholic fatty liver disease is associated with obesity and insulin resistance. Factors that regulate the disposal of hepatic triglycerides contribute to the development of hepatic steatosis. G0/G1 switch gene 2 (G0S2) is a target of peroxisome proliferator-activated receptors and plays an important role in regulating lipolysis in adipocytes. Therefore, we investigated whether G0S2 plays a role in hepatic lipid metabolism. Adenovirus-mediated expression of G0S2 (Ad-G0S2) potently induced fatty liver in mice. The liver mass of Ad-G0S2-infected mice was markedly increased with excess triglyceride content compared to the control mice. G0S2 did not change cellular cholesterol levels in hepatocytes. G0S2 was found to be co-localized with adipose triglyceride lipase at the surface of lipid droplets. Hepatic G0S2 overexpression resulted in an increase in plasma Low-density lipoprotein (LDL)/Very-Low-density (VLDL) lipoprotein cholesterol level. Plasma High-density lipoprotein (HDL) cholesterol and ketone body levels were slightly decreased in Ad-G0S2 injected mice. G0S2 also increased the accumulation of neutral lipids in cultured HepG2 and L02 cells. However, G0S2 overexpression in the liver significantly improved glucose tolerance in mice. Livers expressing G0S2 exhibited increased 6-(N-(7-nitrobenz-2-oxa-1-3-diazol-4-yl) amino)-6-deoxyglucose uptake compared with livers transfected with control adenovirus. Taken together, our results provide evidence supporting an important role for G0S2 as a regulator of triglyceride content in the liver and suggest that G0S2 may be a molecular target for the treatment of insulin resistance and other obesity-related metabolic disorders.


Salidroside improves homocysteine-induced endothelial dysfunction by reducing oxidative stress.

  • Sin Bond Leung‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2013‎

Hyperhomocysteinemia is associated with an increased risk for cardiovascular diseases through increased oxidative stress. Salidroside is an active ingredient of the root of Rhodiola rosea with documented antioxidative, antihypoxia and neuroprotective properties. However, the vascular benefits of salidroside against endothelial dysfunction have yet to be explored. The present study, therefore, aimed to investigate the protective effect of salidroside on homocysteine-induced endothelial dysfunction. Functional studies on the rat aortas were performed to delineate the vascular effect of salidroside. DHE imaging was used to evaluate the reactive oxygen species (ROS) level in aortic wall and endothelial cells. Western blotting was performed to assess the protein expression associated with oxidative stress and nitric oxide (NO) bioavailability. Exposure to homocysteine attenuated endothelium-dependent relaxations in rat aortas while salidroside pretreatment rescued it. Salidroside inhibited homocystein-induced elevation in the NOX2 expression and ROS overproduction in both aortas and cultured endothelial cells and increased phosphorylation of eNOS which was diminished by homocysteine. The present study shows that salidroside is effective in preserving the NO bioavailability and thus protects against homocysteine-induced impairment of endothelium-dependent relaxations, largely through inhibiting the NOX2 expression and ROS production. Our results indicate a therapeutic potential of salidroside in the management of oxidative-stress-associated cardiovascular dysfunction.


Sensitivity and Reusability of SiO2 NRs@ Au NPs SERS Substrate in Trace Monochlorobiphenyl Detection.

  • Mengjing Hou‎ et al.
  • Nanoscale research letters‎
  • 2015‎

Surface-enhanced Raman scattering (SERS) effect is quite preferred to detect trace pollutants, and reusable SERS substrate is of important practical value. In this research, a kind of effective SiO2 nanorods (NRs)@ Au nanoparticles (NPs) substrate was fabricated completely with physical methods, and it was quite sensitive so that 1 × 10(-6) M monochlorobiphenyl (CB) could be detected. Furthermore, congeners of CB could be detected by reusing this kind of SERS substrate, and the cleaning treatment between every two detections was very simple. The excellent performance of the reusable SERS substrate indicated its great application potential.


Pro-inflammatory Macrophages suppress PPARγ activity in Adipocytes via S-nitrosylation.

  • Ruiying Yin‎ et al.
  • Free radical biology & medicine‎
  • 2015‎

Peroxisome proliferator-activated receptor-γ (PPARγ) is a ligand-activated nuclear receptor and plays an essential role in insulin signaling. Macrophage infiltration into adipose tissue is a character of metabolic inflammation and closely related to insulin resistance in type 2 diabetes. The mechanism by which pro-inflammatory macrophages cause insulin resistance remains to be elucidated. Here we showed that co-culture with macrophages significantly suppressed the transcriptional activity of PPARγ on its target genes in 3T3-L1 preadipocytes and diabetic primary adipocytes, depending on inducible nitric oxide synthase (iNOS). We further showed that PPARγ underwent S-nitrosylation in response to nitrosative stress. Mass-spectrometry and site-directed mutagenesis revealed that S-nitrosylation at cysteine 168 was responsible for the impairment of PPARγ function. Extended exposure to NO instigated the proteasome-dependent degradation of PPARγ. Consistently, in vivo evidence revealed an association of the decreased PPARγ protein level with increased macrophage infiltration in visceral adipose tissue (VAT) of obese diabetic db/db mice. Together, our results demonstrated that pro-inflammatory macrophages suppressed PPARγ activity in adipocytes via S-nitrosylation, suggesting a novel mechanism linking metabolic inflammation with insulin resistance.


Role of TRPV1 in the Differentiation of Mouse Embryonic Stem Cells into Cardiomyocytes.

  • Yan Qi‎ et al.
  • PloS one‎
  • 2015‎

Cytosolic Ca2+ ([Ca2+]i) is an important signal that regulates cardiomyocyte differentiation during cardiogenesis. TRPV1 is a Ca2+-permeable channel that is expressed in cardiomyocytes. In the present study, we utilized mouse embryonic stem cell-derived cardiomyocytes (mESC-CMs) as a model to investigate the functional role of TRPV1 in cardiomyocyte differentiation. Induction of embryonic stem cells into cardiomyocytes was achieved using embryoid body (EB)-based differentiation method. Quantitative PCRs showed an increased TRPV1 expression during the differentiation process. In [Ca2+]i measurement study, application of TRPV1 agonists, capsaicin and camphor, elicited a [Ca2+]i rise in mESC-CMs, the effect of which was abolished by TRPV1-shRNA. In functional study, treatment of EBs with TRPV1 antagonists (capsazepine and SB366791) and TRPV1-shRNA reduced the size of the EBs and decreased the percentage of spontaneously beating EBs. TRPV1 antagonists and TRPV1-shRNA also suppressed the expression of cardiomyocyte marker genes, including cardiac actin, c-TnT, c-TnI, and α-MHC. Taken together, this study demonstrated an important functional role of TRPV1 channels in the differentiation of mESCs into cardiomyocytes.


TRPC5 channels participate in pressure-sensing in aortic baroreceptors.

  • On-Chai Lau‎ et al.
  • Nature communications‎
  • 2016‎

Blood pressure is maintained within a normal physiological range by a sophisticated regulatory mechanism. Baroreceptors serve as a frontline sensor to detect the change in blood pressure. Nerve signals are then sent to the cardiovascular control centre in the brain in order to stimulate baroreflex responses. Here, we identify TRPC5 channels as a mechanical sensor in aortic baroreceptors. In Trpc5 knockout mice, the pressure-induced action potential firings in the afferent nerve and the baroreflex-mediated heart rate reduction are attenuated. Telemetric measurements of blood pressure demonstrate that Trpc5 knockout mice display severe daily blood pressure fluctuation. Our results suggest that TRPC5 channels represent a key pressure transducer in the baroreceptors and play an important role in maintaining blood pressure stability. Because baroreceptor dysfunction contributes to a variety of cardiovascular diseases including hypertension, heart failure and myocardial infarction, our findings may have important future clinical implications.


[The influence of sodium bicarbonate combined with ulinastatin on cholinesterase activity for patients with acute phoxim pesticide poisoning].

  • Bo Zhao‎ et al.
  • Zhonghua lao dong wei sheng zhi ye bing za zhi = Zhonghua laodong weisheng zhiyebing zazhi = Chinese journal of industrial hygiene and occupational diseases‎
  • 2016‎

To observe the effect of sodium bicarbonate combined with ulinastatin on cholinesterase activity for patients with acute phoxim pesticide poisoning.


Up-regulated expression of phospholipase C, β1 is associated with tumor cell proliferation and poor prognosis in hepatocellular carcinoma.

  • Junxiang Li‎ et al.
  • OncoTargets and therapy‎
  • 2016‎

Phospholipase C, β1 (PLCB1) plays critical roles in intracellular transduction and regulating signal activation which are important to tumorigenesis. However, the mechanism of PLCB1 in hepatocellular carcinoma (HCC) is still unknown. This study aims to investigate whether its expression is associated with the clinicopathological parameters and prognosis of the patients with HCC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: