Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 25 papers

Ischemic postconditioning inhibits apoptosis in an in vitro proximal tubular cell model.

  • Xiaodong Weng‎ et al.
  • Molecular medicine reports‎
  • 2015‎

Ischemia-reperfusion is a common injury of clinical ischemic disease and surgical lesions. Ischemic postconditioning (IPO) improves the ability of organs subjected to ischemia to tolerate injury. However, renal IPO studies have been based on animal models. In order to gain insights into IPO-induced alterations at the cellular level, an in vitro model for IPO was designed using the rat proximal tubular cell line NRK-52 E. This model was established by placing NRK-52 E cells in ischemic conditions for 3 h, then exposing cells to three cycles of reperfusion for 10 min and finally to ischemic conditions for 10 min (postconditioning). The cells were cultured further in reperfusion conditions for 3, 6, 12 and 24 h. Flow cytometry and Hoechst were used to assess apoptosis. The protein expression of B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), caspase-3, cleaved caspase-3 and caspase-8 were analyzed by western blotting. The results demonstrated that apoptosis occurred in cells subjected to ischemia/reperfusion (I/R) alone or with postconditioning following reperfusion for 24 h. Cells subjected to I/R demonstrated increased expression of Bax, cleaved caspase-3 and caspase-8 at the end of reperfusion. However, the levels of Bax, cleaved caspase-3 and caspase-8 were significantly attenuated in cells, which had undergone IPO. In conclusion, apoptosis was observed in cells subjected to 3 h of ischemia-reperfusion injury and IPO was able to inhibit this apoptosis. IPO inhibited apoptosis by inhibiting the caspase pathway thereby exerting protective effects.


DNase I aggravates islet β-cell apoptosis in type 2 diabetes.

  • Bin Zhu‎ et al.
  • Molecular medicine reports‎
  • 2016‎

Deoxyribonuclease I (DNase I) is an endonuclease responsible for the destruction of chromatin during apoptosis. However, its role in diabetes remains unclear. The aim of the current study was to investigate the role of DNase I combined with high glucose levels in β‑cell apoptosis. Human samples were collected and the DNase I activity was examined. High glucose‑cultured INS‑1 cells were transfected with DNase I small interfering RNA (siRNA) and the cell apoptosis was examined by western blotting and flow cytometry. Cell viability was analyzed by the Cell Counting Kit‑8 assay. Cell apoptosis resulting from 50 mU/µl DNase I was also observed by flow cytometry, terminal deoxynucleotidyl transferase dUTP nick‑end labeling stain and western blotting. Compared with healthy controls, the serum DNase I activity of patients with diabetes was significantly increased (P<0.05). In addition, DNase I expression was observed to be significantly increased in human pancreatic tissues. The addition of high glucose upregulated the cell apoptotic rate, whereas DNase I knockdown significantly reduced apoptosis in cells treated with high glucose. In addition, the western blotting results indicated that caspase‑3 was increased subsequent to treatment of cells with 30 mM high glucose, however, this increase can be reversed by transfection with DNase I siRNA (P<0.05). Compared with cells cultured in normal conditions and high glucose, 50 mU/µl DNase I was able to significantly increase the cell apoptotic rate and level of caspase-3. DNase I activity was observed to be increased in type 2 diabetes, and high glucose combined with increased DNase I is suggested to aggravate β-cell apoptosis.


MicroRNA-188-3p is involved in sevoflurane anesthesia-induced neuroapoptosis by targeting MDM2.

  • Lei Wang‎ et al.
  • Molecular medicine reports‎
  • 2018‎

Sevoflurane is a commonly used inhalation anesthetic. Sevoflurane-induced neuroapoptosis and cognitive impairments in animals are widely reported, however, the underlying molecular mechanisms remain largely unknown. The results of the present study demonstrated that sevoflurane anesthesia induced spatial memory impairments in rats, as determined by the Morris water maze test. Mechanistically, the current study demonstrated that sevoflurane administration significantly enhanced the expression of microRNA (miR)‑188‑3p. Furthermore, inhibition of miR‑188‑3p using lentiviral miR‑188‑3p inhibitors attenuated sevoflurane‑induced cognitive impairments in rats. The present study also demonstrated that miR‑188‑3p targeted MDM2 proto‑oncogene (MDM2) and negatively regulated the expression of MDM2, as determined by luciferase assays, reverse transcription‑quantitative polymerase chain reaction and western blot analysis. Furthermore, decreased abundance of MDM2 following transfection with miR‑188‑3p mimics was associated with increased stability of p53 protein. Suppression of p53 activity using the specific p53 inhibitor pifithrin‑α alleviated sevoflurane‑induced neuroapoptosis. These results indicate that the miR‑188‑3p‑MDM2‑p53 axis may have a critical role in sevoflurane‑induced cognitive dysfunction. Therefore, miR‑188‑3p may be a potential target for the treatment of sevoflurane‑induced cognitive impairment.


Effects of probiotics on Toll‑like receptor expression in ulcerative colitis rats induced by 2,4,6‑trinitro‑benzene sulfonic acid.

  • Ping Yao‎ et al.
  • Molecular medicine reports‎
  • 2017‎

The present study aimed to investigate the regulatory effect of probiotics on the expression of Toll‑like receptors (TLRs) in an ulcerative colitis (UC) rat model, and to determine the role of probiotics in the underlying mechanisms through which UC develops and progresses in rat models. Rats were randomly allocated to one of the four following groups: i) The healthy control, ii) the model, iii) the Golden bifid treatment group, and iv) the TLR4 monoclonal antibody (TLR4mAb) intervention group. The UC rat model was established using 2,4,6‑trinitro‑benzene sulfonic acid. The general status and histological changes of rats were scored using the disease activity index and the histopathological scoring method, respectively. In these rats, the expression of TLR4 and TLR2 was measured using reverse transcription‑quantitative polymerase chain reaction. The expression of TLR4 and TLR2 in the model group was significantly higher than that in the healthy control group. However, when compared with the model rats, those that received either Golden bifid treatment or TLR4mAb intervention exhibited significantly decreased mRNA expression levels of TLR4 and TLR2 (P<0.05). The development of UC is characterized by an abnormal immune response in the intestines. Probiotics alleviated inflammatory reactions in rats with UC. The underlying mechanism of UC may be associated with the expression of TLRs and the subsequent release of inflammatory cytokines.


Embryotoxicity estimation of commonly used compounds with embryonic stem cell test.

  • Hui Liu‎ et al.
  • Molecular medicine reports‎
  • 2017‎

The embryonic stem cell test (EST), an alternative model to animal studies, is a reliable and scientifically validated in vitro system for testing embryotoxicity. In contrast to most in vivo animal tests, two permanent cell lines, murine fibroblasts (BALB/c‑3T3 cells) and murine embryonic stem cells (mES‑D3 cells), are used in EST instead of animals in standard tests of toxicity. The embryotoxic potential of compounds (non, weak or strong embryotoxicity) may be obtained with a biostatistics‑based prediction model and calculated from three different experimental endpoint values: The potency to inhibit growth of i) BALB/c‑3T3 cells and ii) mES‑D3 cells (IC503T3 and IC50ES) as presented using a cell cytotoxicity assay, and iii) the potency to inhibit differentiation of mES‑D3 cells into contracting cardiomyocytes (ID50 D3) as demonstrated in a mES‑D3 cell differentiation assay. In the present study, a model of EST with mES‑D3 cells and BALB/c‑3T3 cells was established, according to the standard EST system of the EU Center for the Validation of Alternative Methods, and verified it with 5‑fluorouracil (strong embryotoxicity) as a positive control and penicillin G (non‑embryotoxic) as a negative control. In addition, the authors further assessed the embryotoxicity of four compounds (eugenol, carnosic acid, procyanidin and dioctyl phthalate) with this model. The embryotoxic potentials of the four compounds were successfully classified by the EST system. Eugenol exhibited strong embryotoxicity, carnosic acid and dioctyl phthalate exhibited weak embryotoxicity, while procyanidin exhibited non‑embryotoxicity.


Inhibition of the SIRT1 signaling pathway exacerbates endoplasmic reticulum stress induced by renal ischemia/reperfusion injury in type 1 diabetic rats.

  • Jianjian Zhang‎ et al.
  • Molecular medicine reports‎
  • 2020‎

The aim of the present study was to investigate whether the diabetic kidney is more susceptible to ischemia/reperfusion (I/R) injury, and identify the potential mechanisms involved. An animal model of type 1 diabetes was created by treating rats with streptozotocin (STZ). This model was then used, along with healthy controls, to investigate the effect of diabetes mellitus (DM) on renal I/R injury. After 45 min of ischemia and 24 h of reperfusion, kidney and serum samples were acquired and used to evaluate function and histopathological injury in the kidneys. Western blotting was also used to determine the expression levels of key proteins. Rats experiencing renal I/R exhibited significant characteristics of renal dysfunction, reduced levels of Sirtuin 1 (SIRT1) protein (a key signaling protein in the kidneys), increased endoplasmic reticulum stress (ERS) and pyroptosis. Furthermore, diabetic rats exhibited further reductions in the levels of SIRT1 in response to renal I/R injury and an increase in the levels of ERS. These effects were all alleviated by the administration of a SIRT1 agonist. The present analysis revealed that the SIRT1‑mediated activation of ER stress and pyroptosis played a pivotal role in diabetic rats subjected to renal I/R injury. Downregulation of the SIRT1 signaling pathway were exacerbated in response to renal I/R injury‑induced acute kidney injury (AKI). The present data indicated that DM enhanced ER stress and increased pyroptosis by downregulating the SIRT1 signaling pathway.


PI3K/AKT phosphorylation activates ERRα by upregulating PGC‑1α and PGC‑1β in gallbladder cancer.

  • Lei Wang‎ et al.
  • Molecular medicine reports‎
  • 2021‎

The nuclear estrogen‑related receptor‑α (ERRα) is an orphan receptor that has been identified as a transcriptional factor. Peroxisome proliferator‑activated receptor‑γ (PPARγ) coactivator‑1‑α (PGC‑1α) and PPARγ coactivator‑1‑β (PGC‑1β) act as the co‑activators of ERRα. Our previous study reported that activated ERRα promoted the invasion and proliferation of gallbladder cancer cells by promoting PI3K/AKT phosphorylation. Therefore, the aim of the current study was to investigate whether PI3K/AKT phosphorylation could enhance ERRα activity in a positive feedback loop. LY294002 and insulin‑like growth factor I (IGF‑I) were used to inhibit and promote PI3K/AKT phosphorylation, respectively. A 3X ERE‑TATA luciferase reporter was used to measure ERRα activity. The present study found that LY294002 inhibited PI3K/AKT phosphorylation, decreased the proliferation and invasion of NOZ cells and suppressed the activity of ERRα. Conversely, IGF‑I induced PI3K/AKT phosphorylation, promoted the proliferation and invasion of NOZ cells and enhanced the activity of ERRα. The protein expression levels of PGC‑1α and PGC‑1β were elevated and reduced by IGF‑I and LY294002, respectively. Moreover, knockdown of PGC‑1α and PGC‑1β antagonized ERRα activation, which was enhanced by PI3K/AKT phosphorylation. Taken together, the present study demonstrated that PI3K/AKT phosphorylation triggered ERRα by upregulating the expression levels of PGC‑1α and PGC‑1β in NOZ cells.


Overexpression of salusin‑β downregulates adipoR1 expression to prevent fatty acid oxidation in HepG2 cells.

  • Aohong Xu‎ et al.
  • Molecular medicine reports‎
  • 2024‎

Salusin‑β and adiponectin receptor 1 (adipoR1) serve important roles in the development of certain cardiovascular diseases and lipid metabolism. However, to the best of our knowledge, the relationship between salusin‑β and adipoR1, and their underlying mechanisms of action, currently remain unclear. In the present study, lentiviral vectors designed to overexpress salusin‑β or knock down salusin‑β expression were used in 293T and HepG2 cells. Semi‑quantitative PCR was performed to investigate the relationship between salusin‑β and adipoR1 mRNA expression in 293T cells. Western blotting was used to assess the protein expression levels of adipoR1, adenosine monophosphate‑activated protein kinase (AMPK), acetyl‑CoA carboxylase (ACC) and carnitine palmitoyl transferase 1A (CPT‑1A) in transfected HepG2 cells. Simultaneously, HepG2 cells were treated with an adipoR1 inhibitor (thapsigargin) or agonist (AdipoRon) and the resultant changes in the expression levels of the aforementioned proteins were observed. Oil Red O staining and measurements of cellular triglyceride levels were performed to assess the extent of lipid accumulation in HepG2 cells. The results demonstrated that salusin‑β overexpression downregulated adipoR1 expression and inhibited the phosphorylation of AMPK and ACC, which led to decreased CPT‑1A protein expression. By contrast, salusin‑β knockdown increased adipoR1 expression and promoted the phosphorylation of AMPK and ACC, which conversely enhanced CPT‑1A protein expression. Treatment with adipoR1 agonist, AdipoRon, reversed the effects of salusin‑β overexpression. In addition, salusin‑β overexpression enhanced intracellular lipid accumulation in HepG2 cells induced by free fatty acid treatment. These findings highlighted the potential regulatory role of salusin‑β in adipoR1‑mediated signaling pathways. To conclude, the present study provided insights into the regulation of fatty acid metabolism by the liver. In particular, salusin‑β may serve as a potential target for the therapeutic intervention of metabolic disorders of lipids.


Abnormal alterations in the Ca²⁺/CaV1.2/calmodulin/caMKII signaling pathway in a tremor rat model and in cultured hippocampal neurons exposed to Mg²⁺-free solution.

  • Xintong Lv‎ et al.
  • Molecular medicine reports‎
  • 2015‎

Voltage-dependent calcium channels (VDCCs) are key elements in epileptogenesis. There are several binding-sites linked to calmodulin (CaM) and several potential CaM-dependent protein kinase II (CaMKII)-mediated phosphorylation sites in CaV1.2. The tremor rat model (TRM) exhibits absence‑like seizures from 8 weeks of age. The present study was performed to detect changes in the Ca2+/CaV1.2/CaM/CaMKII pathway in TRMs and in cultured hippocampal neurons exposed to Mg2+‑free solution. The expression levels of CaV1.2, CaM and phosphorylated CaMKII (p‑CaMKII; Thr‑286) in these two models were examined using immunofluorescence and western blotting. Compared with Wistar rats, the expression levels of CaV1.2 and CaM were increased, and the expression of p‑CaMKII was decreased in the TRM hippocampus. However, the expression of the targeted proteins was reversed in the TRM temporal cortex. A significant increase in the expression of CaM and decrease in the expression of CaV1.2 were observed in the TRM cerebellum. In the cultured neuron model, p‑CaMKII and CaV1.2 were markedly decreased. In addition, neurons exhibiting co‑localized expression of CaV1.2 and CaM immunoreactivities were detected. Furthermore, intracellular calcium concentrations were increased in these two models. For the first time, o the best of our knowledge, the data of the present study suggested that abnormal alterations in the Ca2+/CaV1.2/CaM/CaMKII pathway may be involved in epileptogenesis and in the phenotypes of TRMs and cultured hippocampal neurons exposed to Mg2+‑free solution.


Potential genetic damage to nematode offspring following exposure to triclosan during pregnancy.

  • Aixia Zhang‎ et al.
  • Molecular medicine reports‎
  • 2017‎

Triclosan (TCS) is widely used as broad-spectrum antibacterial agent. However, it may threaten the health of human offspring if the mother is exposed to TCS during pregnancy. The present study aimed to identify potential mechanisms behind the toxic effect of TCS on the offspring of Caenorhabditis elegans (C. elegans), using this nematode as a suitable animal model. The results of the current study demonstrated that the locomotory behavior and reproductive capacity of C. elegans offspring was severely affected by prenatal exposure to different concentrations of TCS. A high‑throughput gene microarray was performed to investigate molecular alterations in C. elegans offspring following TCS exposure during pregnancy. Microarray results indicated that 113 genes were differentially expressed following TCS treatment compared with the control group. Gene ontology analysis demonstrated that these dysregulated genes were primarily associated with neuron development, muscular strength and reproduction. Pathway analysis results demonstrated that differentially expressed genes participated in several signaling pathways, including arginine, proline, and purine metabolism, progesterone‑mediated oocyte maturation and neuroactive ligand‑receptor interaction. Finally, 7 TCS toxicity-associated genes were confirmed by reverse transcription‑quantitative polymerase chain reaction. The present study indicates that TCS exposure during pregnancy may disturb the locomotory behavior and reproductive capacity of C. elegans offspring, primarily through 7 TCS toxicity‑associated genes, which merits further study from an environmental health perspective.


Ganoderic acid A inhibits proliferation and invasion, and promotes apoptosis in human hepatocellular carcinoma cells.

  • Xu Wang‎ et al.
  • Molecular medicine reports‎
  • 2017‎

Ganoderic acid A (GA‑A), a triterpenoid, has been demonstrated to suppress cell proliferation in various cancers, including breast cancer and osteosarcoma. However, its effect on human hepatocellular carcinoma (HCC) remains to be elucidated. The present study aimed to investigate the effect of GA‑A on HCC cells in vitro. The HepG2 and SMMC7721 human HCC cell lines were treated with differing concentrations of GA‑A for 24, 48 and 72 h. The cell growth rate, cell cycle and apoptosis, migration and invasion were determined using a Cell Counting Kit‑8, flow cytometry and transwell assays, respectively. The expression of apoptosis‑associated proteins was detected via western blot analysis. GA‑A significantly inhibited the proliferation of human HCC HepG2 and SMMC7721 cells in a dose‑dependent manner. Furthermore, GA‑A induced cell cycle arrest at the G0/G1 phase and apoptosis, and suppressed the migration and invasion of HCC cells. Furthermore, GA‑A decreased the expression of cyclin D1 and increased the expression of p21 and cleaved caspase‑3. In conclusion, GA‑A suppressed the proliferation of human HCC cells in vitro and may act as a promising natural therapeutic reagent in the treatment of HCC.


Antioxidant effect of angiotensin (1‑7) in the protection of pancreatic β cell function.

  • Fen Zhang‎ et al.
  • Molecular medicine reports‎
  • 2016‎

It is well known that the local renin-angiotensin system (RAS) is activated in the diabetic state, which results in an increase in the level of oxidative stress injury to pancreatic β cells. The angiotensin‑converting enzyme 2 (ACE2)/angiotensin (1‑7) [Ang (1‑7)]/Mas axis is a negative regulator of the classical renin‑angiotensin system. In order to investigate the antioxidant effect of Ang (1‑7) on pancreatic β cells, INS‑1 cells were cultured and oxidative stress was induced by treatment with H2O2. Glucose‑stimulated insulin secretion (GSIS), the generation of reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and glucose-stimulated calcium (GSCa) responses in β cells were determined following treatment with Ang (1-7). It was observed that H2O2 significantly impaired the insulin secreting function, increased the production of ROS, and also decreased the levels of GSCa and MMP. Pre‑treatment with Ang (1‑7) alleviated these effects and treatment with A779 [antagonist of Ang (1‑7)] prevented the effects of Ang (1-7). Based on these findings, it was concluded that Ang (1‑7) can protect pancreatic β cells from oxidative injury and such protection can be blocked by its antagonist A779.


Exosomal microRNA‑4516, microRNA‑203 and SFRP1 are potential biomarkers of acute myocardial infarction.

  • Peng Liu‎ et al.
  • Molecular medicine reports‎
  • 2023‎

Acute myocardial infarction (AMI) is a serious disease which threatens public health. Exosomes (exos) contain certain genetic information and are important communication vehicles between cells. In the present study, different exosomal microRNAs (miRs), which exhibit a notable association between expression levels in plasma and AMI were assessed to support the development of new diagnostic and clinical assessment markers of patients with AMI. In total, 93 individuals, including 31 healthy controls and 62 patients with AMI, were recruited for the present study. Data on age, blood pressure, glucose levels, lipid levels and coronary angiography images were collected from the enrolled individuals, and plasma samples were collected. Plasma exos were extracted and verified using ultracentrifugation, transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA) and western blotting (WB). Exo‑miR‑4516 and exo‑miR‑203 in plasma exos were identified by exosomal miRNA sequencing analysis, reverse transcription‑quantitative PCR was performed to detect the levels of exo‑miR‑4516 and exo‑miR‑203 in plasma exos, and ELISA was performed to detect the levels of secretory frizzled‑related protein 1 (SFRP1) in samples. The correlation analysis between exo‑miR‑4516, exo‑miR‑203 and SFRP1 in plasma exos and AMI was presented as receiver operating characteristic curves (ROCs) of the SYNTAX score, cardiac troponin I (cTnI), low‑density lipoprotein (LDL) and each indicator separately. Kyoto Encyclopedia of Genes and Genomes enrichment analysis was performed to predict relevant enrichment pathways. Exos were successfully isolated from plasma by ultracentrifugation, which was confirmed by TEM, NTA and WB. Exo‑miR‑4516, exo‑miR‑203 and SFRP1 levels in plasma were significantly higher in the AMI group compared with the healthy control group. ROCs demonstrated that exo‑miR‑4516, exo‑miR‑203 and SFRP1 levels had a high diagnostic efficiency in predicting AMI. Exo‑miR‑4516 was positively correlated with SYNTAX score, and plasma SFRP1 was positively correlated with plasma cTnI and LDL. In conclusion, the data demonstrated that exo‑miR‑4516, exo‑miR‑203 and SFRP1 levels could be used in combination to diagnose and assess the severity of AMI. The present study was retrospectively registered (TRN, NCT02123004).


Hydrogen molecules (H2) improve perfusion recovery via antioxidant effects in experimental peripheral arterial disease.

  • Jinrong Fu‎ et al.
  • Molecular medicine reports‎
  • 2018‎

Reactive oxygen species (ROS) impair neovascularization and perfusion recovery following limb ischemia in patients with peripheral arterial disease (PAD). Hydrogen molecules (H2) comprise an antioxidant gas that has been reported to neutralize cytotoxic ROS. The present study investigated whether H2 may serve as a novel therapeutic strategy for PAD. H2‑saturated water or dehydrogenized water was supplied to mice with experimental PAD. Laser Doppler perfusion imaging demonstrated that H2‑saturated water improved perfusion recovery, decreased the rate of necrosis, increased the capillary density in the gastrocnemius muscle and increased the artery density in the abductor muscle in the ischemic limbs, at 14 and 21 days post‑hindlimb ischemia. Ischemic muscle tissue was harvested 7 days after experimental PAD for biochemical testing and H2 was observed to reduce the levels of malondialdehyde and increase the levels of cyclic guanine monophosphate (cGMP). In cultured endothelial cells, H2‑saturated culture medium resulted in reduced ROS levels, increased tube formation and increased cGMP levels. In macrophages, H2 decreased cellular ROS levels and promoted M2 polarization. H2‑saturated water increases angiogenesis and arteriogenesis and subsequently improves perfusion recovery in a mouse PAD model via reduction of ROS levels.


Polyaniline promotes peripheral nerve regeneration by enhancement of the brain‑derived neurotrophic factor and ciliary neurotrophic factor expression and activation of the ERK1/2/MAPK signaling pathway.

  • Lin Fan‎ et al.
  • Molecular medicine reports‎
  • 2017‎

A previous study has demonstrated a progression in the nerve regeneration by polyaniline/cellulose (PANI/RC), although the underlying mechanism was not elucidated. In the present study, regenerated nerves were investigated, using histological techniques, functional assays and western blot analysis. The triceps surae muscle weight ratio percentages of the sham, regenerated cellulose (RC) and the PANI/RC groups were 38.88±4.76 and 76.32±7.11%, respectively. The thickness of the myelin sheath for the aforementioned groups were as follows: 1.2±0.27; 0.49±0.21 and 0.93±0.28 µl. Western blot analysis demonstrated that the ciliary neurotrophic factor (CNTF) and brain‑derived neurotrophic factor (BDNF) were highly expressed in the regenerated nerve in the presence of polyaniline. Phosphorylated extracellular kinase (p‑ERK)1/2 expression in the PANI/RC group was significantly elevated compared with the RC group (1.83‑fold) and the sham group (4.92‑fold). The expression of the axon sprout‑associated proteins, such as Tau, α‑tubulin and growth associated protein‑43, were increased (1.64, 1.59 and 1.24‑fold, respectively) compared with the RC group. The results demonstrated that PANI enhances the expression and secretion of BDNF and CNTF, activates the ERK1/2 signaling pathway and increases the expression levels of the GAP‑43, Tau and α‑tubulin, suggesting an insight into nerve regeneration and possible clinical interventions in nerve injury.


Isolation of cancer progenitor cells from cancer stem cells in gastric cancer.

  • Zhiyang Shang‎ et al.
  • Molecular medicine reports‎
  • 2017‎

The success of cancer treatment may depend on the complete elimination of cancer stem cells (CSCs). However, data regarding the current characterization of CSCs in different types of tumor are inconsistent, possibly due to the mixture of CSCs with cancer progenitor cells (CPCs). Therefore, it is important to exclude CPCs for the characterization of CSCs. The present study aimed to characterize gastric cancer stem cells (GCSC) by separating GCPC from gastric progenitor cells (GCSC) with flow cytometry. In total, 615 murine gastric cancer (GC) cells were divided into aldehyde dehydrogenase (ALDH)high, ALDHlow and ALDHneg groups by flow cytometry according to their ALDH activity. With decreased ALDH activity, the expression levels of stemness‑associated markers, CD133+, octamer‑binding transcription factory‑4 and sex determining region Y‑box 2 decreased. The ALDHhigh and ALDHlow cells proliferated and formed tumor spheres in ultra‑low adhesion medium without serum, however, the latter formed larger tumor spheres. In mice transplanted with 5,000 cells, the rate of tumor formation in the ALDHlow group was significantly higher, compared with that in the ALDHhigh group. Of note, an increased number of mice developed tumors in the ALDHhigh group 16 weeks following the injection of 500 cells, whereas tumors appeared at 8 weeks in the ALDHlow group. The mice in the ALDHneg group exhibited less tumor formation under these conditions. These results demonstrated that ALDHhigh cells had characteristics of GCSCs with a high level of self‑renewal ability, but were in a relative resting stage. The ALDHlow cells had characteristics of GCPCs with limited self‑renewal ability, but were in a rapid proliferation stage. These findings suggested that the separation of GCPCs from GCSCs is important for elucidating the biology of GCSCs and identifying strategies to eliminate GCSCs in GC.


Genistein attenuates renal fibrosis in streptozotocin‑induced diabetic rats.

  • Qiang Jia‎ et al.
  • Molecular medicine reports‎
  • 2019‎

The present study aimed to investigate the antifibrogenic effects of genistein (GEN) on the kidney in streptozotocin (STZ)‑induced diabetic rats and to determine the associated mechanisms. Rats were randomized into four groups: Normal control (N), STZ (S), L (STZ + low‑dose GEN) and H (STZ + high‑dose GEN). After 8 weeks, the fasting blood glucose (FBG) level, the ratio of kidney weight to body weight (renal index), 24‑h urine protein, blood urea nitrogen (BUN), serum creatinine (SCr), renal total antioxidant capacity (T‑AOC), superoxide dismutase (SOD), lipid peroxidation (LPO), malondialdehyde (MDA) and hydroxyproline (Hyp) contents were measured. The histomorphology and ultrastructure of the kidney were also assessed. In addition, mRNA expression levels of transforming growth factor‑β1 (TGF‑β1) and protein expression levels of nuclear factor erythroid 2‑related factor 2 (Nrf2), heme oxygenase‑1 (HO‑1), NAD(P)H:quinone oxidoreductase 1 (NQO1), TGF‑β1, mothers against decapentaplegic homolog 3 (Smad3), phosphorylated (p)‑Smad3 and collagen IV were estimated. Compared with group N, the levels of FBG, renal index, 24‑h urine protein, BUN, SCr, LPO, MDA and Hyp were increased, whereas the levels of T‑AOC and SOD were decreased in group S. The structure of renal tissue was damaged, and the expression of Nrf2, HO‑1 and NQO1 were reduced, whereas the expression of TGF‑β1, Smad3, p‑Smad3 and collagen IV were increased in group S. Compared with group S, the aforementioned indices were improved in groups L and H. In conclusion, GEN exhibited reno‑protective effects in diabetic rats and its mechanisms may be associated with the inhibition of oxidative stress by activating the Nrf2‑HO‑1/NQO1 pathway, and the alleviation of renal fibrosis by suppressing the TGF‑β1/Smad3 pathway.


Mechanism of Astragalus polysaccharides in attenuating insulin resistance in Rats with type 2 diabetes mellitus via the regulation of liver microRNA‑203a‑3p.

  • Zitai Wei‎ et al.
  • Molecular medicine reports‎
  • 2018‎

Insulin resistance (IR) is a common feature of type 2 diabetes mellitus (T2DM). Astragalus polysaccharides (APS) is a natural medicine that is used to treat T2DM. However, the mechanism by which APS regulates micro (mi)RNA in the treatment of IR has not been investigated. The purpose of the present study was to investigate differential miRNA expression between normal, T2DM model and APS treatment rats, as well as changes in miRNA and its downstream gene expression levels after APS treatment in T2DM Goto Kakizaki (GK) rats. Results suggested that miRNA (miR)‑203a‑3p expression level was significantly decreased in the liver of T2DM GK rats. Furthermore, it was identified that glucose‑regulated protein (GRP)78 was the target gene of miR‑203a‑3p. GRP78 mRNA and protein expression levels of GRP78, CAAT‑enhancer‑binding protein homologous protein (CHOP), phosphorylated‑c‑Jun N‑terminal kinase (pJNK)1, and caspase‑12 were significantly increased in the liver of T2DM GK rats. Furthermore, miR‑203a‑3p was upregulated following APS treatment, and the protein expression levels of GRP78, CHOP, pJNK1 and caspase‑12 were significantly decreased. In addition, miR‑203a‑3p overexpression in IR cells decreased the protein expression levels of these factors and anti‑miR‑203a‑3p produced the opposite result. These findings provided evidence that miR‑203a‑3p may have a functional role in endoplasmic reticulum stress (ERS) signaling in the liver of T2DM GK rats. In addition, APS attenuated IR in T2DM, likely through upregulating or maintaining the miR‑203a‑3p expression levels, decreasing GRP78 mRNA and protein expression levels and regulating the protein expression of the ERS signaling pathway.


Neuroprotective effect of chondroitin sulfate on SH‑SY5Y cells overexpressing wild‑type or A53T mutant α‑synuclein.

  • Chuanxia Ju‎ et al.
  • Molecular medicine reports‎
  • 2017‎

Accumulation of α‑synuclein (α‑SYN) is a common pathology for Parkinson's disease (PD). There is abundant evidence that the toxic‑gain‑of‑function of α‑SYN's is associated with aggregation and consequent effects. To assess the potential of chondroitin sulfate (CS) in this regard, the present study investigated its neuroprotective on SH‑SY5Y cells overexpressing wild‑type (WT) or A53T mutant α‑SYN. Cell viability was measured by MTT assay. Apoptosis, reactive oxygen species (ROS) and mitochondrial membrane potential were detected by flow cytometry. The protein expression levels of total α‑SYN, phosphorylated Ser129 α‑SYN, B‑cell lymphoma 2 (Bcl‑2), Bcl‑2‑associated X protein (Bax) and cytochrome‑c (Cyt‑c ) were analyzed by western blotting. It was observed that CS reduced the expression levels of total α‑SYN and phosphorylated Ser129 α‑SYN, prevented cell loss and inhibited apoptosis. The subsequent mechanism study indicated that CS inhibited ROS overproduction. CS also significantly attenuated WT and A53T mutant α‑SYN‑induced dysfunction, including decrease of mitochondrial membrane potential, decrease of Bcl‑2 expression, and increase of Bax expression, release of Cyt‑c from the mitochondria and activation of caspase‑3 and caspase‑9, which demonstrated that CS suppressed α‑SYN‑induced apoptosis possibly through mitochondria protection. These results suggested that CS protects SH‑SY5Y cells overexpressing WT or A53T mutant α‑SYN by inhibiting the expression and phosphorylation of α‑SYN, and ROS overproduction and mitochondrial apoptosis. These results implicate CS as a potential therapeutic agent for the treatment of PD.


A comprehensive competitive endogenous RNA network pinpoints key molecules in diabetic retinopathy.

  • Yingcheng Wu‎ et al.
  • Molecular medicine reports‎
  • 2019‎

Diabetic retinopathy (DR) is a severe microvascular complication of diabetes and the primary cause of vision loss in diabetic patients. Previous research has revealed that long non‑coding RNAs (lncRNAs) and microRNAs (miRNAs) play pivotal roles in the pathogenesis of DR. However, the roles of lncRNA‑miRNA‑mRNA interactions in DR are poorly understood. In the present study, we aimed to compute a global triple network of competitive endogenous RNAs (ceRNAs) in order to pinpoint essential molecules. We found that there were 802 nodes (121 lncRNA nodes, 17 miRNA nodes, and 664 mRNA nodes) and 949 edges in the ceRNA network. Further functional analysis suggested that some molecules were specifically related to DR. Surprisingly, these molecules were involved in visual perception, eye development, and lens development in camera‑type eye. In summary, our study highlighted specific lncRNAs and miRNAs related to the pathogenesis of DR, which might be used as potential diagnostic biomarkers and therapeutic targets for DR.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: