Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 14 papers out of 14 papers

Sustained delivery of calcium and orthophosphate ions from amorphous calcium phosphate and poly(L-lactic acid)-based electrospinning nanofibrous scaffold.

  • Xufeng Niu‎ et al.
  • Scientific reports‎
  • 2017‎

The purpose of this study is to investigate electrospinning poly(L-lactic acid) (PLLA) nanofibrous scaffold with different contents of amorphous calcium phosphate (ACP), which is suitable for using in bone regeneration through sustained release of calcium and orthophosphate ions. Three groups of nanofibrous scaffolds, ACP-free PLLA, ACP-5 wt%/PLLA and ACP-10 wt%/PLLA, are developed and characterized by scanning electron microscopy and gel permeation chromatography. Calcium and phosphate colorimetric assay kits are used to test ions released from scaffold during hydrolytic degradation. The results show ACP-5 wt%/PLLA and ACP-10 wt%/PLLA scaffolds have relatively high degradation rates than ACP-free PLLA group. The bioactivity evaluation further reveals that ACP-5 wt%/PLLA scaffold presents more biocompatible feature with pre-osteoblast cells and significant osteogenesis ability of calvarial bone defect. Due to the facile preparation method, sustained calcium and orthophosphate release behavior, and excellent osteogenesis capacity, the presented ACP/PLLA nanofibrous scaffold has potential applications in bone tissue engineering.


Analysis of combined resistance to oxazolidinones and phenicols among bacteria from dogs fed with raw meat/vegetables and the respective food items.

  • Yifan Wu‎ et al.
  • Scientific reports‎
  • 2019‎

The gene optrA is the first gene that confers resistance to the oxazolidinone tedizolid, a last resort antimicrobial agent in human medicine. In this study we investigated the presence of optrA and the multi-resistance genes poxtA and cfr in enterococci and staphylococci from (i) pet animals known to be fed raw meat and vegetables and (ii) the respective food items. We examined 341 bacterial isolates from cats and dogs, 195 bacterial isolates from supermarket food items and only one E. faecium collected from industrial food in Beijing during 2016. Thirty-five (6.5%) of the 537 isolates, including 31/376 (8.2%) enterococci and 4/161 (2.5%) staphylococci, were positive for optrA, while all isolates were negative for poxtA and cfr. S1-nuclease pulsed-field gel electrophoresis (PFGE) and Southern blotting confirmed that optrA was located in the chromosomal DNA of 19 isolates and on a plasmid in the remaining 16 isolates. Whole genome sequencing revealed several different genetic environments of optrA in plasmid- or chromosome-borne optrA genes. PFGE, multilocus sequence typing (MLST) and/or SNP analysis demonstrated that the optrA-carrying Staphylococcus and Enterococcus isolates were genetically heterogeneous. However, in single cases, groups of related isolates were identified which might suggest a transfer of closely related optrA-positive E. faecalis isolates between food items and dogs.


Comprehensive analysis of the SLC16A gene family in pancreatic cancer via integrated bioinformatics.

  • Shan Yu‎ et al.
  • Scientific reports‎
  • 2020‎

SLC16A family members play crucial roles in tumorigenesis and tumor progression. However, the exact role of distinct members in the SLC16A family in human pancreatic cancer remains unclear. Integrated bioinformatics analysis for the identification of therapeutic targets for certain cancers based on transcriptomics, proteomics and high-throughput sequencing could help us obtain novel information and understand potential underlying molecular mechanisms. In the present study, we investigated SLC16A family members in pancreatic cancer through accumulated data from GEO (Gene Expression Omnibus), TCGA (The Cancer Genome Atlas) and other available databases. The expression profile, clinical application significance and prognostic value of the SLC16A family for patients with pancreatic cancer were explored. SLC16A1, SLC16A3 and SLC16A13 exhibited biomarker potential for prognosis, and we further identified their related genes and regulatory networks, revealing core molecular pathways that require further investigation for pancreatic cancer.


Insights into the Mechanistic Basis of Plasmid-Mediated Colistin Resistance from Crystal Structures of the Catalytic Domain of MCR-1.

  • Philip Hinchliffe‎ et al.
  • Scientific reports‎
  • 2017‎

The polymixin colistin is a "last line" antibiotic against extensively-resistant Gram-negative bacteria. Recently, the mcr-1 gene was identified as a plasmid-mediated resistance mechanism in human and animal Enterobacteriaceae, with a wide geographical distribution and many producer strains resistant to multiple other antibiotics. mcr-1 encodes a membrane-bound enzyme catalysing phosphoethanolamine transfer onto bacterial lipid A. Here we present crystal structures revealing the MCR-1 periplasmic, catalytic domain to be a zinc metalloprotein with an alkaline phosphatase/sulphatase fold containing three disulphide bonds. One structure captures a phosphorylated form representing the first intermediate in the transfer reaction. Mutation of residues implicated in zinc or phosphoethanolamine binding, or catalytic activity, restores colistin susceptibility of recombinant E. coli. Zinc deprivation reduces colistin MICs in MCR-1-producing laboratory, environmental, animal and human E. coli. Conversely, over-expression of the disulphide isomerase DsbA increases the colistin MIC of laboratory E. coli. Preliminary density functional theory calculations on cluster models suggest a single zinc ion may be sufficient to support phosphoethanolamine transfer. These data demonstrate the importance of zinc and disulphide bonds to MCR-1 activity, suggest that assays under zinc-limiting conditions represent a route to phenotypic identification of MCR-1 producing E. coli, and identify key features of the likely catalytic mechanism.


Deciphering deterioration mechanisms of complex diseases based on the construction of dynamic networks and systems analysis.

  • Yuanyuan Li‎ et al.
  • Scientific reports‎
  • 2015‎

The early diagnosis and investigation of the pathogenic mechanisms of complex diseases are the most challenging problems in the fields of biology and medicine. Network-based systems biology is an important technique for the study of complex diseases. The present study constructed dynamic protein-protein interaction (PPI) networks to identify dynamical network biomarkers (DNBs) and analyze the underlying mechanisms of complex diseases from a systems level. We developed a model-based framework for the construction of a series of time-sequenced networks by integrating high-throughput gene expression data into PPI data. By combining the dynamic networks and molecular modules, we identified significant DNBs for four complex diseases, including influenza caused by either H3N2 or H1N1, acute lung injury and type 2 diabetes mellitus, which can serve as warning signals for disease deterioration. Function and pathway analyses revealed that the identified DNBs were significantly enriched during key events in early disease development. Correlation and information flow analyses revealed that DNBs effectively discriminated between different disease processes and that dysfunctional regulation and disproportional information flow may contribute to the increased disease severity. This study provides a general paradigm for revealing the deterioration mechanisms of complex diseases and offers new insights into their early diagnoses.


Induction of autophagy improves embryo viability in cloned mouse embryos.

  • XingHui Shen‎ et al.
  • Scientific reports‎
  • 2015‎

Autophagy is an essential cellular mechanism that degrades cytoplasmic proteins and organelles to recycle their components. Moreover, autophagy is essential for preimplantation development in mammals. Here we show that autophagy is also important for reprogramming in somatic cell nuclear transfer (SCNT). Our data indicate that unlike fertilized oocytes, autophagy is not triggered in SCNT embryos during 6 hours of activation. Mechanistically, the inhibited autophagic induction during SCNT activation is due to the cytochalasin B (CB) caused depolymerization of actin filaments. In this study, we induced autophagy during SCNT activation by rapamycin and pp242, which could restore the expected level of autophagy and significantly enhance the development of SCNT embryos to the blastocyst stage when compared with the control (68.5% and 68.7% vs. 41.5%, P < 0.05). Furthermore, the treatment of rapamycin and pp242 accelerates active DNA demethylation indicated by the conversion of 5 mC to 5 hmC, and treatment of rapamycin improves degradation of maternal mRNA as well. Thus, our findings reveal that autophagy is important for development of SCNT embryos and inhibited autophagic induction during SCNT activation might be one of the serious causes of low efficiency of SCNT.


Labile organic carbon pools and enzyme activities of Pinus massoniana plantation soil as affected by understory vegetation removal and thinning.

  • Yafei Shen‎ et al.
  • Scientific reports‎
  • 2018‎

The effects of forest management on carbon (C) sequestration are poorly understood, particularly in the Three Gorges Reservoir area. We aimed to identify the effects of forest management on C sequestration in Pinus massoniana plantations. An intact control forest (CK), a site undergoing regular shrub cutting with the simultaneous removal of residues (SC), a site under low-intensity thinning (LIT), and a site under high-intensity thinning (HIT) were compared for soil labile organic carbon (LOC), related enzyme activities, and soil characteristics. Soil organic carbon (SOC) significantly decreased in the HIT treatment as compared with that in the CK treatment. Soil EOC, DOC, MBC contents in treated plots were higher than those in the CK treatment; particularly, the HIT treatment significantly increased those values in 0-10 cm layer. Thinning resulted in a decrease in cellulase and amylase activities, but an increase in invertase activity. In addition, the SOC content was significantly correlated with four enzymes activities and LOC components, which suggested that the soil LOC components and enzymes activities were sensitive to the changes of SOC. Our results suggest that high-intensity thinning treatment in Pinus massoniana plantation could significantly decrease the SOC content and lead to an increase of LOC components.


Embryonic germ cell extracts erase imprinted genes and improve the efficiency of induced pluripotent stem cells.

  • Jing Hu‎ et al.
  • Scientific reports‎
  • 2018‎

Patient-specific induced pluripotent stem cells (iPSCs) have the potential to be useful in the treatment of human diseases. While prior studies have reported multiple methods to generate iPSCs, DNA methylation continues to limit the totipotency and reprogramming efficiency of iPSCs. Here, we first show the competency of embryonic germ cells (EGCs) as a reprogramming catalyst capable of effectively promoting reprogramming induced by four defined factors, including Oct4, Sox2, Klf4 and c-Myc. Combining EGC extracts with these four factors resulted in formation of more embryonic stem cell-like colonies than did factors alone. Notably, expression of imprinted genes was higher with combined induction than with factors alone. Moreover, iPSCs derived from the combined inductors tended to have more global hypomethylation. Our research not only provides evidence that EGC extracts could activate DNA demethylation and reprogram imprinted genes, but also establishes a new way to enhance reprogramming of iPSCs, which remains a critical safety concern for potential use of iPSCs in regenerative medicine.


QTL mapping for seed density per silique in Brassica napus.

  • Jifeng Zhu‎ et al.
  • Scientific reports‎
  • 2023‎

Seed density per silique (SDPS) and valid silique length (VSL) are two important yield-influencing traits in rapeseed. SDPS has a direct or indirect effect on rapeseed yield through its effect on seed per silique. In this study, a quantitative trait locus (QTL) for SDPS was detected on chromosome A09 using the QTL-seq approach and confirmed via linkage analysis in the mapping population obtained from 4263 × 3001 cross. Furthermore, one major QTL for SDPS (qSD.A9-1) was mapped to a 401.8 kb genomic interval between SSR markers Nys9A190 and Nys9A531. In the same genomic region, a QTL (qSL.A9) linked to VSL was also detected. The phenotypic variation of qSD.A9-1 and qSL.A9 was 53.1% and 47.6%, respectively. Results of the additive and dominant effects demonstrated that the expression of genes controlling SDPS and VSL were derived from a different parent in this population. Subsequently, we identified 56 genes that included 45 specific genes with exonic (splicing) variants. Further analysis identified specific genes containing mutations that may be related to seed density as well as silique length. These genes could be used for further studies to understand the details of these traits of rapeseed.


Autophagy is required for proper meiosis of porcine oocytes maturing in vitro.

  • Xing-Hui Shen‎ et al.
  • Scientific reports‎
  • 2018‎

Autophagy is an essential cellular mechanism that degrades cytoplasmic proteins and organelles to recycle their components; however, the contribution of autophagy during meiosis has not been studied in porcine oocytes maturing in vitro. In this study, we observed that the autophagy-related gene, LC3, was expressed in porcine oocytes during maturation for 44 h in vitro. Knockdown of the autophagy-related gene, BECN1, reduced both BECN1 and LC3 protein expression levels. Moreover, BECN1 knockdown and treatment with the autophagy inhibitor, LY294002, during maturation of porcine oocytes in vitro impaired polar body extrusion, disturbed mitochondrial function, triggered the DNA damage response, and induced early apoptosis in porcine oocytes. Autophagy inhibition during oocyte maturation also impaired the further developmental potential of porcine oocytes. These results indicate that autophagy is required for the in vitro maturation of porcine oocytes.


Novel application of neural network modelling for multicomponent herbal medicine optimization.

  • Yong-Shen Ren‎ et al.
  • Scientific reports‎
  • 2019‎

The conventional method for effective or toxic chemical substance identification of multicomponent herbal medicine is based on single component separation, which is time-consuming, labor intensive, inefficient, and neglects the interaction and integrity among the components; therefore, it is necessary to find an alternative routine to evaluate the components more efficiently and scientifically. In this study, sodium aescinate injection (SAI), obtained from different manufacturers and prepared as "components knockout" samples, was chosen as the case study. The chemical fingerprints of SAI were obtained by high-performance liquid chromatography to provide the chemical information. The effectiveness and irritation of each sample were evaluated using anti-inflammatory and irritation tests, and then "Gray correlation" analysis (GCA) was applied to rank the effectiveness and irritability of each component to provide a preliminary judgment for product optimization. The prediction model of the proportions of the expected components was constructed using the artificial neural network. The results of the GCA showed that the irritation sorting of each SAI component was in the order of B > A > G > J > I > H > D > F > E > C and the effectiveness sorting of SAI components was in the order of D > C > B > A > F > E > H > I > G > J; the predictive proportion of SAI was optimized by the BP neural network as A: B: C: D: E: F = 0.7526: 0.5005: 5.4565: 1.4149: 0.8113: 1.0642. This study provided a scientific, accurate, reliable, and efficient approach for the proportion optimization of multicomponent drugs, which has a good prospect of popularization and application in product upgrading and development of herbal medicine.


A new clinical-genomic model to predict 10-year recurrence risk in primary operable breast cancer patients.

  • Tzu-Ting Huang‎ et al.
  • Scientific reports‎
  • 2020‎

This study aimed to validate the long-term prognostic value of a new clinical-genomic model, Distant Genetic Model-Clinical Variable Model 6 (DGM-CM6), developed in Asia as a prognostic panel for all subtypes of breast cancer. We included 752 operable stage I-III breast cancer patients representing all subtypes treated from 2005 to 2014 as the validation cohort. The median follow-up was 95.8 months. The low- and high-risk patients classified by DGM-CM6 (RI-DR) had significant differences in 10-year distant recurrence-free interval (DRFI) (94.1% vs. 85.0%, P < 0.0001) and relapse-free survival (RFS) (90.0% vs. 80.5%, P = 0.0003). External validation using EMTAB-365 dataset showed similar observation (P < 0.0001). DGM-CM6 was an independent prognostic factor by multivariate analysis with hazard ratios of 3.1 (1.6-6.0) for RFS (P = 0.0009) and 3.8 (1.6-9.0) for DRFI (P = 0.0028). Comparing the C-index of DGM-CM6 and PAM50-ROR scores, the former performed better than the latter in predicting long-term DRFI and RFS, especially in N0, ER/PR-positive, and HER2-negative patients.


Traceability of the geographical origin of Siraitia grosvenorii based on multielement contents coupled with chemometric techniques.

  • Xiao-Ping Huang‎ et al.
  • Scientific reports‎
  • 2021‎

Siraitia grosvenorii (LHG) is widely used as a medicinal and edible material around the world. The objective of this study was to develop an effective method for the authentication of the geographical origin of LHG in its main producing area Guangxi, China, which is identified as Chinese Protected Designation of Origin product, against other producing regions in China. The content of 14 elements (K, Na, Ca, P, Mg, Al, B, Ba, Cu, Fe, Mn, Ni, Zn, and Sr) of 114 LHG samples was determined by inductively coupled plasma optical emission spectrometry. Multivariate analysis was then performed to classify the geographical origin of LHG samples. The contents of multielement display an obvious trend of clustering according to the geographical origin of LHG samples based on radar plot and principal component analysis. Finally, three supervised statistical techniques, including linear discriminant analysis (LDA), k-nearest neighbours (k-NN), and support vector machine (SVM), were applied to develop classification models. Finally, 40 unknown LHG samples were used to evaluate the predictive ability of model and discrimination rate of 100%, 97.5% and 100% were obtained for LDA, k-NN, and SVM, respectively. This study indicated that it is feasible to attribute unknown LHG samples to its geographical origin based on its multielement content coupled with chemometric techniques.


Pathological cardiac remodeling occurs early in CKD mice from unilateral urinary obstruction, and is attenuated by Enalapril.

  • Onju Ham‎ et al.
  • Scientific reports‎
  • 2018‎

Cardiovascular disease constitutes the leading cause of mortality in patients with chronic kidney disease (CKD) and end-stage renal disease. Despite increasing recognition of a close interplay between kidney dysfunction and cardiovascular disease, termed cardiorenal syndrome (CRS), the underlying mechanisms of CRS remain poorly understood. Here we report the development of pathological cardiac hypertrophy and fibrosis in early stage non-uremic CKD. Moderate kidney failure was induced three weeks after unilateral urinary obstruction (UUO) in mice. We observed pathological cardiac hypertrophy and increased fibrosis in UUO-induced CKD (UUO/CKD) animals. Further analysis indicated that this cardiac fibrosis was associated with increased expression of transforming growth factor β (TGF-β) along with significant upregulation of Smad 2/3 signaling in the heart. Moreover early treatment of UUO/CKD animals with an angiotensin-converting-enzyme inhibitor (ACE I), Enalapril, significantly attenuated cardiac fibrosis. Enalapril antagonized activation of the TGF-β signaling pathway in the UUO/CKD heart. In summary our study demonstrates the presence of pathological cardiac hypertrophy and fibrosis in mice early in UUO-induced CKD, in association with early activation of the TGF-β/Smad signaling pathway. We also demonstrate the beneficial effect of ACE I in alleviating this early fibrogenic process in the heart in UUO/CKD animals.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: