Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 21 papers

From Pig Breeding Environment to Subsequently Produced Pork: Comparative Analysis of Antibiotic Resistance Genes and Bacterial Community Composition.

  • Zongbao Liu‎ et al.
  • Frontiers in microbiology‎
  • 2019‎

It is well verified that pig farms are an important reservoir and supplier of antibiotic resistance genes (ARGs). However, little is known about the transmission of ARGs between the breeding environment and subsequently produced pork. This study was conducted to investigate if ARGs and associated host bacteria spread from the breeding environment onto the meat through the food production chain. We thus analyzed the occurrence and abundance of ARGs, as well as comparing both ARG and bacterial community compositions in farm soil, pig feces and pork samples from a large-scale pig farm located in Xiamen, People's Republic of China. Among the 26 target ARGs, genes conferring resistance to sulfonamide, trimethoprim, aminoglycoside, chloramphenicol, macrolide, florfenicol, and tetracycline were observed at high frequency in both the pig breeding environment and pork. The prevalence of ARGs in pork was surprisingly consistent with breeding environments, especially between the pork and feces. The relative abundance of 10 representative ARGs conferring resistance to six classes of antibiotics ranged from 3.01 × 10-1 to 1.55 × 10-6 copies/16S rRNA copies. The ARGs conferring resistance to sulfanilamide (sulI and sulII), aminoglycoside (aadA), and tetracycline [tet(A) and tet(M)] were most highly abundant across most samples. Samples from feces and meat possessed a higher similarity in ARG compositions than samples from the farms soil. Enterobacteriaceae found on the meat samples were further identical with previously isolated multidrug-resistant bacteria from the same pig farm. Our results strongly indicate that ARGs can be potentially spreading from pig breeding environment to meat via the pork industry chain, such as feed supply, pig feeding and pork production.


Metagenomics Reveals Microbial Diversity and Metabolic Potentials of Seawater and Surface Sediment From a Hadal Biosphere at the Yap Trench.

  • Xinxu Zhang‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Hadal biosphere represents the deepest part of the ocean with water depth >6,000 m. Accumulating evidence suggests the existence of unique microbial communities dominated by heterotrophic processes in this environment. However, investigations of the microbial diversity and their metabolic potentials are limited because of technical constraints for sample collection. Here, we provide a detailed metagenomic analysis of three seawater samples at water depths 5,000-6,000 m below sea level (mbsl) and three surface sediment samples at water depths 4,435-6,578 mbsl at the Yap Trench of the western Pacific. Distinct microbial community compositions were observed with the dominance of Gammaproteobacteria in seawater and Thaumarchaeota in surface sediment. Comparative analysis of the genes involved in carbon, nitrogen and sulfur metabolisms revealed that heterotrophic processes (i.e., degradation of carbohydrates, hydrocarbons, and aromatics) are the most common microbial metabolisms in the seawater, while chemolithoautotrophic metabolisms such as ammonia oxidation with the HP/HB cycle for CO2 fixation probably dominated the surface sediment communities of the Yap Trench. Furthermore, abundant genes involved in stress response and metal resistance were both detected in the seawater and sediments, thus the enrichment of metal resistance genes is further hypothesized to be characteristic of the hadal microbial communities. Overall, this study sheds light on the metabolic versatility of microorganisms in the Yap Trench, their roles in carbon, nitrogen, and sulfur biogeochemical cycles, and how they have adapted to this unique hadal environment.


The Distribution of Bathyarchaeota in Surface Sediments of the Pearl River Estuary Along Salinity Gradient.

  • Dayu Zou‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

Bathyarchaeota, a recently proposed archaeal phylum, is globally distributed and highly abundant in anoxic sediments. Metabolic pathways of the Bathyarchaeota members are diverse and, hence, this phylum has been proposed to play an important role in global biogeochemical cycles. Bathyarchaeota members are distributed in the estuarine environments. However, limited information is available about their detailed community structure, abundance, and functions in the Pearl River estuary (PRE). In the current study, we performed a comprehensive investigation of the archaeal community in the PRE surface sediments along a salinity gradient, with a focus on Bathyarchaeota. Bathyarchaeota was the dominant archaeal phylum, with the abundance of the bathyarchaeotal 16S rRNA gene ranging from 1.43 × 108 to 1.22 × 109 copies/g sediment dry weight (d.w.), and Bathy-8 was the dominant subgroup. Thaumarchaeota, Lokiarchaeota, and Euryarchaeota, including Thermoprofundales (MBG-D archaea), were the other major archaeal groups in the PRE. The differences of community distributions in the high- and low-salinity sediments were hence investigated. Statistical analysis revealed that besides salinity, ammonium, and total organic carbon were the most important environmental factors influencing the archaea community structure, including that of Bathyarchaeota, in the PRE. The archaeal network indicated the cooccurrence among Bathyarchaeota, Lokiarchaeota, and Euryarchaeota, while Bathy-6 presented unique correlations compared with other bathyarchaeotal subgroups. These observations indicate that Bathyarchaeota may play a role in ecosystem function through microbe-microbe interactions, revealing a possible different lifestyle for Bathy-6 in eutrophic estuarine sediments.


Simultaneous Differentiation of the N1 to N9 Neuraminidase Subtypes of Avian Influenza Virus by a GeXP Analyzer-Based Multiplex Reverse Transcription PCR Assay.

  • Sisi Luo‎ et al.
  • Frontiers in microbiology‎
  • 2019‎

To date, nine neuraminidase (NA) subtypes of avian influenza virus (AIV) have been identified in poultry and wild birds. Rapid and effective methods for differentiating these nine NA subtypes are needed. We developed and validated a rapid, sensitive, and robust method utilizing a GeXP analyzer-based multiplex RT-PCR assay and capillary electrophoresis for the simultaneous differentiation of the N1 to N9 subtypes in a single-tube reaction. Ten pairs of primers-nine subtype-specific pairs and one pan-AIV pair-were screened and used to establish the GeXP multiplex RT-PCR assay. A single subtype was detected using the developed GeXP assay; the N1 to N9 AIV subtypes individually generated two target peaks: the NA subtype-specific peak and the general AIV peak. Different concentrations of multiplexed subtypes were tested with this GeXP assay and the peaks of the corresponding NA subtypes were generated, suggesting that this GeXP assay is useful for identifying NA subtypes in mixed samples. Moreover, no peaks were generated for other important avian viruses, indicating negative results and validating the lack of cross-reactions between AIV subtypes and other avian pathogens. RNA templates synthesized through in vitro transcription were used to analyze the sensitivity of the assay; the limit of detection was 100 copies per reaction mixture. The results obtained from clinical samples using this GeXP method were consistent with the results of the neuraminidase inhibition (NI) test, and the ability of the GeXP assay to identify mixed infections was superior to amplicon sequencing of isolated viruses. In conclusion, this GeXP assay is proposed as a specific, sensitive, rapid, high-throughput, and versatile diagnostic tool for nine NA subtypes of AIV.


CodY is modulated by YycF and affects biofilm formation in Staphylococcus aureus.

  • Shizhou Wu‎ et al.
  • Frontiers in microbiology‎
  • 2022‎

Staphylococcus aureus (S. aureus) is the leading cause of various infective diseases, including topical soft tissue infections. The goals of this study were to investigate the roles of YycF and CodY in the regulation of biofilm formation and pathogenicity.


Amino Acid Substitution K470R in the Nucleoprotein Increases the Virulence of H5N1 Influenza A Virus in Mammals.

  • Lin Chen‎ et al.
  • Frontiers in microbiology‎
  • 2017‎

H5N1 is a highly pathogenic influenza A virus (IAV) and poses a major threat to the public health. The nucleoprotein (NP) has a multiple functions during the viral life cycle, however, the precise role of NP mutants in viral replication and pathogenicity is not completely understood. Here, we attempted to identify five residues in NP that may contribute to viral replication or pathogenicity. Of these, K227R, K229R, and K470R viruses were successfully rescued by reverse genetic, but the K91R and K198R viruses were not viable. A mini-genome assay demonstrated that the NP mutations K91R and K198R significantly decreased the polymerase activity. Moreover, these two mutations resulted in disrupted cellular localization in mammalian cells. Importantly, mutation at position 470 of NP significantly increased its virulence in vitro and in vivo. These findings demonstrated that the NP protein plays a major role in influenza virulence and pathogenicity, which adds to the knowledge of IAV virulence determinants and may benefit IAV surveillance.


Determining the Different Mechanisms Used by Pseudomonas Species to Cope With Minimal Inhibitory Concentrations of Zinc via Comparative Transcriptomic Analyses.

  • Lei Lei‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

Pseudomonas is one of the most diverse bacterial genera identified in the environment. Genome sequence analysis has indicated that this genus can be clustered into three lineages and ten groups. Each group can adopt different mechanisms to thrive under zinc-depleted or high-zinc conditions, two environments that are frequently encountered during their environmental propagation. The response of three prominent Pseudomonas strains (Pseudomonas aeruginosa PAO1, Pseudomonas putida KT2440, and Pseudomonas fluorescens ATCC 13525T) to minimal inhibitory concentrations of zinc were compared using RNA-seq and ultra-performance liquid chromatography-tandem mass spectrometry analysis. Results demonstrated that the three strains shared only minimal similarity at the transcriptional level. Only four genes responsible for zinc efflux were commonly upregulated. P. aeruginosa PAO1 specifically downregulated the operons involved in siderophore synthesis and the genes that encode ribosomal protein, while upregulated the genes associated with antibiotic efflux and cell envelope biosynthesis. The membrane transporters in P. putida KT2440 were globally downregulated, indicating changes in cell permeability. Compared with P. aeruginosa PAO1 and P. putida KT2440, the most remarkable transcriptional variation in P. fluorescens ATCC 13525T is the significant downregulation of the type VI secretion system. Metabolite quantitative analysis showed that low concentrations of the metabolites involved in central carbon metabolism and amino acid synthesis were detected in the three strains. In summary, the cellular responses of the three strains under high-zinc condition is quite divergent. Although similar metal efflux systems were upregulated, the three strains employed different pathways to reduce zinc intrusion. In addition, zinc treatment can increase the difficulties of scavenging P. aeruginosa from its colonization area, and reduce the competitiveness of P. fluorescens in microbiota.


The rnc Gene Promotes Exopolysaccharide Synthesis and Represses the vicRKX Gene Expressions via MicroRNA-Size Small RNAs in Streptococcus mutans.

  • Meng-Ying Mao‎ et al.
  • Frontiers in microbiology‎
  • 2016‎

Dental caries is a biofilm-dependent disease that largely relies on the ability of Streptococcus mutans to synthesize exopolysaccharides. Although the rnc gene is suggested to be involved in virulence mechanisms in many other bacteria, the information regarding it in S. mutans is very limited. Here, using deletion or overexpression mutant assay, we demonstrated that rnc in S. mutans significantly positively regulated exopolysaccharide synthesis and further altered biofilm formation. Meanwhile, the cariogenecity of S. mutans was decreased by deletion of rnc in a specific pathogen-free (SPF) rat model. Interestingly, analyzing the expression at mRNA level, we found the downstream vic locus was repressed by rnc in S. mutans. Using deep sequencing and bioinformatics analysis, for the first time, three putative microRNA-size small RNAs (msRNAs) targeting vicRKX were predicted in S. mutans. The expression levels of these msRNAs were negatively correlated with vicRKX but positively correlated with rnc, indicating rnc probably repressed vicRKX expression through msRNAs at the post-transcriptional level. In all, the results present that rnc has a potential role in the regulation of exopolysaccharide synthesis and can affect vicRKX expressions via post-transcriptional repression in S. mutans. This study provides an alternative avenue for further research aimed at preventing caries.


Shewanella oneidensis FabB: A β-ketoacyl-ACP Synthase That Works with C16:1-ACP.

  • Qixia Luo‎ et al.
  • Frontiers in microbiology‎
  • 2016‎

It is established that Escherichia coli β-ketoacyl-ACP synthase (KAS) I (encoded by EcfabB) is the primary, if not exclusive, factor for elongation of the cis-3-decenoyl-ACP (C10:1-ACP) but not effective with C16:1- or longer-chain-ACPs. To test the extent to which these features apply to KAS I proteins in other species, in this study, we examined the physiological role of FabB in Shewanella oneidensis, an excellent model for researching type II fatty acid synthetic (FAS) system and its regulation. We showed that the loss of either FabA (the enzyme that introduces double bond) or FabB, in the absence of DesA which desaturizes C16 and C18 to generate respective C16:1 and C18:1, leads to a UFA auxotroph. However, fatty acid profiles of membrane phospholipid of the fabA and fabB mutants are significantly different, suggesting that FabB participates in steps beyond elongation of C10:1-ACP. Further analyses demonstrated that S. oneidensis FabB differs from EcFabB in that (i) it is not the only enzyme capable of catalyzing elongation of the cis-3-decenoyl-ACP produced by FabA, (ii) it plays a critical role in elongation of C16:1- and longer-chain-ACPs, and (iii) its overproduction is detrimental.


Screening of interferon-stimulated genes against avian reovirus infection and mechanistic exploration of the antiviral activity of IFIT5.

  • Sheng Wang‎ et al.
  • Frontiers in microbiology‎
  • 2022‎

Avian reovirus (ARV) infection can lead to severe immunosuppression, complications, and secondary diseases, causing immense economic losses to the poultry industry. In-depth study of the mechanism by which the innate immune system combats ARV infection, especially the antiviral effect mediated by interferon, is needed to prevent and contain ARV infection. In this study, ARV strain S1133 was used to artificially infect 7-day-old specific pathogen-free chickens. The results indicated that ARV rapidly proliferated in the immune organs, including the spleen, bursa of Fabricius, and thymus. The viral load peaked early in the infection and led to varying degrees of pathological damage to tissues and organs. Real-time quantitative PCR revealed that the mRNA levels of interferon and multiple interferon-stimulated genes (ISGs) in the spleen, bursa of Fabricius, and thymus were upregulated to varying degrees in the early stage of infection. Among the ISGs, IFIT5, and Mx were the most upregulated in various tissues and organs, suggesting that they are important ISGs for host resistance to ARV infection. Further investigation of the role of IFIT5 in ARV infection showed that overexpression of the IFIT5 gene inhibited ARV replication, whereas inhibition of the endogenously expressed IFIT5 gene by siRNA promoted ARV replication. IFIT5 may be a positive feedback regulator of the innate immune signaling pathways during ARV infection and may induce IFN-α production by promoting the expression of MAD5 and MAVS to exert its antiviral effect. The results of this study help explain the innate immune regulatory mechanism of ARV infection and reveal the important role of IFIT5 in inhibiting ARV replication, which has important theoretical significance and practical application value for the prevention and control of ARV infection.


Genetic Characterization of Continually Evolving Highly Pathogenic H5N6 Influenza Viruses in China, 2012-2016.

  • Meng Li‎ et al.
  • Frontiers in microbiology‎
  • 2017‎

H5N6 is a highly pathogenic avian influenza (HPAI) and a zoonotic disease that causes recurring endemics in East Asia. At least 155 H5N6 outbreaks, including 15 human infections, have been reported in China. These repeated outbreaks have increased concern that the H5N6 virus may cross over to humans and cause a pandemic. In February, 2016, peafowls in a breeding farm exhibited a highly contagious disease. Post-mortem examinations, including RT-PCR, and virus isolation, confirmed that the highly pathogenic H5N6 influenza virus was the causative agent, and the strain was named A/Pavo Cristatus/Jiangxi/JA1/2016. In animal experiments, it exhibited high pathogenicity in chickens and an estimated median lethal dose in mice of ~104.3 TCID50. A phylogenetic analysis showed that JA1/2016 was clustered in H5 clade 2.3.4.4. FG594-like H5N6 virus from Guangdong Province was the probable predecessor of JA1/2016, and the estimated divergence time was June 2014. Furthermore, we found that H5N6 influenza viruses can be classified into the two following groups: Group 1 and Group 2. Group 2 influenza viruses have not been detected since the end of 2014, whereas Group 1 influenza viruses have continually evolved and reassorted with the "gene pool" circulating in south China, resulting in the rise of novel subtypes of this influenza virus. An increase in the number of its identified hosts, the expanding range of its distribution, and the continual evolution of H5N6 AIVs enhance the risk that an H5N6 virus may spread to other continents and cause a pandemic.


Stratified Bacterial and Archaeal Community in Mangrove and Intertidal Wetland Mudflats Revealed by High Throughput 16S rRNA Gene Sequencing.

  • Zhichao Zhou‎ et al.
  • Frontiers in microbiology‎
  • 2017‎

The stratified distribution of bacterial and archaeal communities has been detected in many sediment profiles from various natural environments. A better understanding of microbial composition and diversity pattern in coastal mangrove wetlands in relation to physicochemical and spatial-temporal influences could provide more insights into the ecological functions of microbes in coastal wetlands. In this study, seasonal variations of microbial communities within sediment profiles from two sediment types (mangrove forest and intertidal mudflats) at three sampling locations in coastal Mai Po wetland were characterized using MiSeq high throughput sequencing and 16S rRNA quantitative PCR methods. Bacterial 16S rRNA gene abundance showed clear decreasing trends with increasing depth for all sites, seasonality and sediment types. There is a weak seasonal dynamic of bacterial and archaeal community abundance in both seasons. Seasonality imposed more influence on the beta diversity pattern of bacterial community than archaeal community. The five most abundant phyla within bacterial and archaeal community remain stable between two distinctive seasons. Sediment depth and seasonality are the most influential factors affecting bacterial community composition and diversity. The pH is the most influential factor on shaping the archaeal community. Stratified distribution of bacterial community including aerobic and anaerobic bacterial taxa is largely represented in the surface layers and the subsurface layers, respectively. For archaeal stratification, Thaumarchaeota Marine Group I is the dominant member in surface sediments while Bathyarchaeota and MBG-B dominate in subsurface sediments. Such stratified distribution patterns are irrespective of sediment types, sampling locations or seasonality, but significantly correlated to the sediment depth, which might be shaped by oxygen availability and the distribution of other terminal electron accepters along the depth profile.


Emergence of Genetic Diversity and Multi-Drug Resistant Campylobacter jejuni From Wild Birds in Beijing, China.

  • Juan Du‎ et al.
  • Frontiers in microbiology‎
  • 2019‎

Campylobacter jejuni (C. jejuni) is considered as an opportunistic zoonotic pathogen that may cause gastroenteritis in humans and other animals. Wild birds may be as potential vectors of C. jejuni around urban and suburban areas. Here, 520 samples were collected from 33 wild bird species in urban and suburban areas, Beijing. In total 57 C. jejuni were isolated from seven species. It was found that Nineteen (33.33%, 19/57) isolates were resistant to at least one of 11 antibiotics, especially streptomycin (36.84%) and four isolates resistant to all. Nineteen (33.33%, 19/57) isolates were multi-drug resistance. Multilocus sequence typing (MLST) analysis of the isolates showed that 36 different sequence types (STs) belonged to four Clonal complexes and unassigned. Twenty STs (55.56%) and six alleles among them were first detected. Virulence genes including flaA, cadF, and the cytolethal distending toxin (CDT) gene cluster, were detected in all isolates, but truncated cdt gene clusters only detected in the isolates from the crow, daurian jackdaw and silver pheasant. In conclusion, it was the first detection of C. jejuni involved truncated cdt gene clusters from the silver pheasant. These wild birds around urban and suburban areas may pose potential public health problems as reservoir vectors of C. jejuni.


Increasing Prevalence of ESBL-Producing Multidrug Resistance Escherichia coli From Diseased Pets in Beijing, China From 2012 to 2017.

  • Yanyun Chen‎ et al.
  • Frontiers in microbiology‎
  • 2019‎

We investigated antimicrobial resistance trends and characteristics of ESBL-producing Escherichia coli isolates from pets and whether this correlates with antibiotic usage in the clinic. Clinical samples containing E. coli from diseased cats and dogs were screened for antibiotic sensitivity and associated genotypic features. We identified 127 E. coli isolates from 1886 samples from dogs (n = 1565) and cats (n = 321) with the majority from urinary tract infections (n = 108, 85%). High rates of resistance were observed for β-lactams and fluoroquinolones and resistance to > 3 antibiotic classes (MDR) increased from 67% in 2012 to 75% in 2017 (P < 0.0001). This was especially true for strains resistant to 6-9 antibiotics that increased from 26.67 to 60.71%. Increased rates in β-lactam use for clinical treatment accompanied these increasing resistance rates. Accordingly, the most frequently encountered subtypes were bla CTX-M (n = 44, 34.65%), bla CTX-M-65 (n = 19) and bla CTX-M-15 (n = 18) and qnrB (n = 119, 93.70%). The bla CTX-M-isolates possessed 36 unique pulsed field electrophoretic types (PFGEs) and 28 different sequence types (STs) in ST405 (7, 15.9%), ST131 (3, 6.8%), ST73, ST101, ST372, and ST827 (2, 4.5% each) were the most prevalent. This data demonstrated a high level of diversity for the bla CTX-M-positive E. coli isolates. Additionally, bla NDM-5 was detected in three isolates (n = 3, 2.36%), comprised of two ST101 and one ST405 isolates, and mcr-1 was also observed in three colistin-resistant E. coli with three different STs (ST6316, ST405, and ST46). Our study demonstrates an increasing trend in MDR and ESBL-producing E. coli and this correlated with β-lactam antibiotic usage for treatment of these animals. This data indicates that there is significant risk for the spread of resistant bacteria from pets to humans and antibiotic use for pets should be more strictly regulated.


Genomic and Transcriptomic Resolution of Organic Matter Utilization Among Deep-Sea Bacteria in Guaymas Basin Hydrothermal Plumes.

  • Meng Li‎ et al.
  • Frontiers in microbiology‎
  • 2016‎

Microbial chemosynthesis within deep-sea hydrothermal vent plumes is a regionally important source of organic carbon to the deep ocean. Although chemolithoautotrophs within hydrothermal plumes have attracted much attention, a gap remains in understanding the fate of organic carbon produced via chemosynthesis. In the present study, we conducted shotgun metagenomic and metatranscriptomic sequencing on samples from deep-sea hydrothermal vent plumes and surrounding background seawaters at Guaymas Basin (GB) in the Gulf of California. De novo assembly of metagenomic reads and binning by tetranucleotide signatures using emergent self-organizing maps (ESOM) revealed 66 partial and nearly complete bacterial genomes. These bacterial genomes belong to 10 different phyla: Actinobacteria, Bacteroidetes, Chloroflexi, Deferribacteres, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Proteobacteria, Verrucomicrobia. Although several major transcriptionally active bacterial groups (Methylococcaceae, Methylomicrobium, SUP05, and SAR324) displayed methanotrophic and chemolithoautotrophic metabolisms, most other bacterial groups contain genes encoding extracellular peptidases and carbohydrate metabolizing enzymes with significantly higher transcripts in the plume than in background, indicating they are involved in degrading organic carbon derived from hydrothermal chemosynthesis. Among the most abundant and active heterotrophic bacteria in deep-sea hydrothermal plumes are Planctomycetes, which accounted for seven genomes with distinct functional and transcriptional activities. The Gemmatimonadetes and Verrucomicrobia also had abundant transcripts involved in organic carbon utilization. These results extend our knowledge of heterotrophic metabolism of bacterial communities in deep-sea hydrothermal plumes.


Modulation of Biofilm Exopolysaccharides by the Streptococcus mutans vicX Gene.

  • Lei Lei‎ et al.
  • Frontiers in microbiology‎
  • 2015‎

The cariogenic pathogen Streptococcus mutans effectively utilizes dietary sucrose for the synthesis of exopolysaccharide, which act as a scaffold for its biofilm, thus contributing to its pathogenicity, environmental stress tolerance, and antimicrobial resistance. The two-component system VicRK of S. mutans regulates a group of virulence genes that are associated with biofilm matrix synthesis. Knockout of vicX affects biofilm formation, oxidative stress tolerance, and transformation of S. mutans. However, little is known regarding the vicX-modulated structural characteristics of the exopolysaccharides underlying the biofilm formation and the phenotypes of the vicX mutants. Here, we identified the role of vicX in the structural characteristics of the exopolysaccharide matrix and biofilm physiology. The vicX mutant (SmuvicX) biofilms seemingly exhibited "desertification" with architecturally impaired exopolysaccharide-enmeshed cell clusters, compared with the UA159 strain (S. mutans wild type strain). Concomitantly, SmuvicX showed a decrease in water-insoluble glucan (WIG) synthesis and in WIG/water-soluble glucan (WSG) ratio. Gel permeation chromatography (GPC) showed that the WIG isolated from the SmuvicX biofilms had a much lower molecular weight compared with the UA159 strain indicating differences in polysaccharide chain lengths. A monosaccharide composition analysis demonstrated the importance of the vicX gene in the glucose metabolism. We performed metabolite profiling via (1)H nuclear magnetic resonance spectroscopy, which showed that several chemical shifts were absent in both WSG and WIG of SmuvicX biofilms compared with the UA159 strain. Thus, the modulation of structural characteristics of exopolysaccharide by vicX provides new insights into the interaction between the exopolysaccharide structure, gene functions, and cariogenicity. Our results suggest that vicX gene modulates the structural characteristics of exopolysaccharide associated with cariogenicity, which may be explored as a potential target that contributes to dental caries management. Furthermore, the methods used to purify the EPS of S. mutans biofilms and to analyze multiple aspects of its structure (GPC, gas chromatography-mass spectrometry, and (1)H nuclear magnetic resonance spectroscopy) may be useful approaches to determine the roles of other virulence genes for dental caries prevention.


Differences in Highly Pathogenic H5N6 Avian Influenza Viral Pathogenicity and Inflammatory Response in Chickens and Ducks.

  • Bo Wang‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Infection with H5N6 highly pathogenic avian influenza virus caused high mortality in chickens, while ducks often appear to be asymptomatic. But, some recent H5Nx subtype viruses could cause high mortality in ducks. The variation between different species and the mechanisms by which some H5Nx viruses cause death in ducks requires investigation to identify the key processes in influenza susceptibility and pathogenesis. Here, we characterized two representative H5N6 viruses, A/Pavo cristatus/Jiangxi/JA1/2016 (JA1) and A/Anas crecca/shanghai/SH1/2016 (SH1), and compared their pathogenicity and expression profiles of immune-related genes in chickens and ducks to identify the elements of the host immune-related response that were involved in disease lethality. Results suggested that H5N6 HPAIVs had higher pathogenic and inflammatory effect in chickens than in ducks. Importantly, the TNF-α, IL-6, IFN-γ and iNOS levels were significantly higher in the lung of SH1 infected chickens compared to those of ducks. And we found higher systemic levels of IL-6 induced by JA1 in chickens than in ducks. In addition, our experiments demonstrated that JA1 was associated with greater pathogenicity in ducks were accompanied by the excessive expression of iNOS in the brain. These results are helpful to understand the relationship between the pathogenicity of H5N6 AIVs and inflammatory responses to them in chickens and ducks.


Effect of Different Disinfectants on Bacterial Aerosol Diversity in Poultry Houses.

  • Linlin Jiang‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

To better understand the effect of different disinfectants on the types and quantities of microorganisms in a broiler chicken house, five different types of disinfectants, including ozone, available chlorine, quaternary ammonium salt, glutaraldehyde, and mixed disinfectant, were used. The broiler house microbial communities were analyzed by high-throughput sequencing combined with air sampling. The results showed that the concentrations of airborne aerobic bacteria in the empty broiler houses after application of different disinfectants were significantly reduced compared to a house untreated with disinfectant (P < 0.05 or P < 0.01), and the number of inhalable particles of airborne aerobic bacteria sharply decreased after disinfection. Of the five disinfectants, the mixed disinfectant had the best disinfection efficacy on the total microbial communities (P < 0.05). A total of 508,143 high-quality sequences were obtained by high-throughput sequencing, which identified 1995 operational taxonomic units. In total, 42 phyla and 312 genera were identified. The structures of airborne microbial communities in the broiler houses after the different disinfectants were applied differed. In the house treated with the mixed disinfectant, the microbial communities containing opportunistic pathogens, such as Escherichia-Shigella, Bacillus, and Pseudomonas, had the lowest abundance, with a significant decrease compared to the house untreated with disinfectant. The alpha diversity index showed low diversity of the microbial communities in the house treated with mixed disinfectant. In contrast to the other four disinfectants, only a small amount of bacteria was detected in the air sample in the house treated with the mixed disinfectant; specifically, only four phyla were found (Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes). The mixed disinfectant produced a positive effect on disinfection for four phyla; however, it didn't thoroughly eliminate them. At genus level, Bacillus, Arenimonas, and Shinella could not be detected in the house treated with the mixed disinfectant, but were detected in houses treated with other disinfectants. The high-throughput sequencing results revealed that the combination of multiple disinfectants exhibited a good disinfection efficacy and that this technique could disinfect the air of broiler houses. These results will help guide the development of a reasonable program for broiler house disinfection.


DiTing: A Pipeline to Infer and Compare Biogeochemical Pathways From Metagenomic and Metatranscriptomic Data.

  • Chun-Xu Xue‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Metagenomics and metatranscriptomics are powerful methods to uncover key micro-organisms and processes driving biogeochemical cycling in natural ecosystems. Databases dedicated to depicting biogeochemical pathways (for example, metabolism of dimethylsulfoniopropionate (DMSP), which is an abundant organosulfur compound) from metagenomic/metatranscriptomic data are rarely seen. Additionally, a recognized normalization model to estimate the relative abundance and environmental importance of pathways from metagenomic and metatranscriptomic data has not been organized to date. These limitations impact the ability to accurately relate key microbial-driven biogeochemical processes to differences in environmental conditions. Thus, an easy-to-use, specialized tool that infers and visually compares the potential for biogeochemical processes, including DMSP cycling, is urgently required. To solve these issues, we developed DiTing, a tool wrapper to infer and compare biogeochemical pathways among a set of given metagenomic or metatranscriptomic reads in one step, based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) and a manually created DMSP cycling gene database. Accurate and specific formulae for over 100 pathways were developed to calculate their relative abundance. Output reports detail the relative abundance of biogeochemical pathways in both text and graphical format. DiTing was applied to simulated metagenomic data and resulted in consistent genetic features of simulated benchmark genomic data. Subsequently, when applied to natural metagenomic and metatranscriptomic data from hydrothermal vents and the Tara Ocean project, the functional profiles predicted by DiTing were correlated with environmental condition changes. DiTing can now be confidently applied to wider metagenomic and metatranscriptomic datasets, and it is available at https://github.com/xuechunxu/DiTing.


Potential contribution of the gut microbiota to the development of portal vein thrombosis in liver cirrhosis.

  • Xin-Yu Huang‎ et al.
  • Frontiers in microbiology‎
  • 2023‎

Portal vein thrombosis (PVT) is a serious complication of liver cirrhosis (LC) and is closely related to gut homeostasis. The study aimed to investigate the composition of gut microbiota and its putative role in PVT development in LC.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: