Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 15 papers out of 15 papers

Sexual activity modulates neuroinflammatory responses in male rats.

  • Leah M Pyter‎ et al.
  • Physiology & behavior‎
  • 2018‎

Immune activity influences reproduction, however, the extent to which mating experience may inversely alter immune pathways is poorly understood. A few studies in humans suggest that mating triggers a circulating immune and hypothalamic-pituitary-adrenal axis response. In male rats, mating experience enhances neuroplasticity and improves cognitive function and affective-like behavior, independent of the physical activity component. Yet, the extent to which mating experience may influence immune responses in the brain remain unexplored. Here, we hypothesized that recent mating experience in male rats increases neuroinflammatory signaling (via lipopolysaccharide [LPS] stimulation, i.p.) and associated sickness behaviors (i.e., food intake, weight loss) relative to sexually-naïve controls. Virgin male rats were exposed to a sexually non-receptive (control) or sexually-receptive female for 30 min for six consecutive days. Immediately following the last mating experience, rats were administered a saline or LPS injection and euthanized four hours later. Mating increased Tnfα responses to LPS in the brain, which positively correlated with LPS-induced weight loss. Mating also increased peripheral corticosterone among saline-treated rats, but this corticosterone response was attenuated in the most proficient copulators (e.g., shortest latencies). Thus, recent mating experience may be a unique modulator of select stimulated inflammatory signals that are relevant to adaptive neuroimmune responses and behavior.


Cancer and cancer survival modulates brain and behavior in a time-of-day-dependent manner in mice.

  • Jessica C Santos‎ et al.
  • Scientific reports‎
  • 2019‎

Improvements in breast cancer therapy/diagnosis have substantially increased the cancer survivor population, although many survivors report persistent mental health issues including fatigue, mood and anxiety disorders, and cognitive impairments. These behavioral symptoms impair quality-of-life and are often associated with increased inflammation. Nocturnal rodent models of cancer are critical to the identification of the neurobiological mechanisms underlying these behavioral changes. Although both behavior and immunity display distinct diurnal patterns, most rodent research in this field is performed during the rodents' inactive (light) period, which could potentially undermine the conclusions and clinical relevance. Therefore, here we tested the extent to which mammary tumors or tumor resection ("survivors") in mice affects behavior and neuroinflammation in a nyctohemeral (day versus night)-dependent manner. Indeed, only the dark (active) phase unmasked fatigue-like behavior and altered novel object investigation for both tumor-bearing and -resected mice relative to surgical controls. Several inflammatory markers were expressed in a time-of-day-dependent manner (lower in the dark phase) in the blood and brains of surgical control mice, whereas this temporal pattern was absent (IL-1β, CXCL1, Myd88, Cd4) or reversed (C3) in the respective tissues of tumor-bearing and -resected mice. Taken together, these data indicate that the time of day of assessment significantly modulates various persistent and transient tumor-induced behavioral and immune changes.


Paclitaxel Chemotherapy Elicits Widespread Brain Anisotropy Changes in a Comprehensive Mouse Model of Breast Cancer Survivorship: Evidence From In Vivo Diffusion Weighted Imaging.

  • Lauren D Otto‎ et al.
  • Frontiers in oncology‎
  • 2022‎

Breast cancer is one of the most common diseases in the United States with 1 in 8 women developing the disease in her lifetime. Women who develop breast cancer are often post-menopausal and undergo a complex sequence of treatments including surgery, chemotherapy, and aromatase inhibitor therapy. Both independently and through potential interactions, these factors and treatments are associated with behavioral comorbidities reported in patients (e.g., fatigue), although the underlying neurobiological mechanisms are poorly understood. Currently, brain imaging is the most feasible way to assess neurobiology in patients. Indeed, breast cancer patients display alterations in white matter connections and chemotherapy is associated with decreased white and gray matter in the corpus callosum and cortex as well as decreased hippocampal volume. However, imaging in breast cancer rodent models is lacking, impeding translation of the mechanistic neurobiological findings made possible through modeling. Furthermore, current rodent models of breast cancer often lack the complexity of typical multimodal breast cancer treatments, thereby limiting translational value. The present study aimed to develop a comprehensive model of post-menopausal breast cancer survival using immunocompetent ovariectomized mice, including an orthotopic syngeneic tumor, surgical tumor removal, chemotherapy, and aromatase inhibitor therapy. Using this model, we systematically investigated the cumulative effects of chemotherapy and hormone replacement therapy on neurostructure and behavior using diffusion weighted imaging, open field test, and spontaneous alternation test. Our previous findings, in a simplified chemotherapy-only model, indicate that this regimen of chemotherapy causes circulating and central inflammation concurrent with reduced locomotor activity. The current study, in the more comprehensive model, has recapitulated the peripheral inflammation coincident with reduced locomotor activity as well as demonstrated that chemotherapy also drives widespread changes in brain anisotropy. Validating the clinical relevance of this comprehensive rodent breast cancer model will allow for additional neurobiological investigations of the interactions among various cancer components associated with behavioral comorbidities, as well as the relationship between these mechanisms and neurostructural imaging changes that can be measured in cancer patients.


Tumor-Induced Cardiac Dysfunction: A Potential Role of ROS.

  • Priyanka Karekar‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2021‎

Cancer and heart diseases are the two leading causes of mortality and morbidity worldwide. Many cancer patients undergo heart-related complications resulting in high incidences of mortality. It is generally hypothesized that cardiac dysfunction in cancer patients occurs due to cardiotoxicity induced by therapeutic agents, used to treat cancers and/or cancer-induced cachexia. However, it is not known if localized tumors or unregulated cell growth systemically affect heart function before treatment, and/or prior to the onset of cachexia, hence, making the heart vulnerable to structural or functional abnormalities in later stages of the disease. We incorporated complementary mouse and Drosophila models to establish if tumor induction indeed causes cardiac defects even before intervention with chemotherapy or onset of cachexia. We focused on one of the key pathways involved in irregular cell growth, the Hippo-Yorkie (Yki), pathway. We used overexpression of the transcriptional co-activator of the Yki signaling pathway to induce cellular overgrowth, and show that Yki overexpression in the eye tissue of Drosophila results in compromised cardiac function. We rescue these cardiac phenotypes using antioxidant treatment, with which we conclude that the Yki induced tumorigenesis causes a systemic increase in ROS affecting cardiac function. Our results show that systemic cardiac dysfunction occurs due to abnormal cellular overgrowth or cancer elsewhere in the body; identification of specific cardiac defects associated with oncogenic pathways can facilitate the possible early diagnosis of cardiac dysfunction.


Voluntary wheel running ameliorates select paclitaxel chemotherapy-induced sickness behaviors and associated melanocortin signaling.

  • Kyle A Sullivan‎ et al.
  • Behavioural brain research‎
  • 2021‎

While chemotherapy remains a common cancer treatment, it is associated with debilitating side effects (e.g., anorexia, weight loss, and fatigue) that adversely affect patient quality of life and increase mortality. However, the mechanisms underlying taxane chemotherapy-induced side effects, and effective treatments to ameliorate them, are not well-established. Here, we tested the longitudinal relationship between a clinically-relevant paclitaxel regimen, inflammation, and sickness behaviors (loss of body mass, anorexia, fever, and fatigue) in adult, female mice. Furthermore, we sought to identify the extent to which voluntary exercise (wheel running) attenuates paclitaxel-induced sickness behaviors and underlying central pathways. Body mass and food intake decreased following six doses of chemotherapy treatment relative to vehicle controls, lasting less than 5 days after the last dose. Paclitaxel treatment also transiently decreased locomotion (open field test), voluntary wheel running, home-cage locomotion, and core body temperature without affecting motor coordination (rotarod task). Circulating interleukin (IL)-6 and hypothalamic Il1b gene expression remained elevated in chemotherapy-treated mice at least 3 days after the last dose. Exercise intervention did not ameliorate fatigue or inflammation, but hastened recovery from paclitaxel-induced weight loss. Body mass recovery was associated with the wheel running-induced recovery of body composition, paclitaxel-induced alterations to hypothalamic melanocortin signaling, and associated peripheral circulating hormones (ghrelin and leptin). The present findings demonstrate the benefits of exercise on faster recovery from paclitaxel-induced body mass loss and deficits in melanocortin signaling and suggests the development of therapies targeting the melanocortin pathway to reduce paclitaxel-induced weight loss.


Paclitaxel chemotherapy disrupts behavioral and molecular circadian clocks in mice.

  • Kyle A Sullivan‎ et al.
  • Brain, behavior, and immunity‎
  • 2022‎

Cancer patients experience circadian rhythm disruptions in activity cycles and cortisol release that correlate with poor quality of life and decreased long-term survival rates. However, the extent to which chemotherapy contributes to altered circadian rhythms is poorly understood. In the present study, we examined the extent to which paclitaxel, a common chemotherapy drug, altered entrained and free-running circadian rhythms in wheel running behavior, circulating corticosterone, and circadian clock gene expression in the brain and adrenal glands of tumor-free mice. Paclitaxel injections delayed voluntary wheel running activity onset in a light-dark cycle (LD) and lengthened the free-running period of locomotion in constant darkness (DD), indicating an effect on inherent suprachiasmatic nucleus (SCN) pacemaker activity. Paclitaxel attenuated clock gene rhythms in multiple brain regions in LD and DD. Furthermore, paclitaxel disrupted circulating corticosterone rhythms in DD by elevating its levels across a 24-hour cycle, which correlated with blunted amplitudes of Arntl, Nr1d1, Per1, and Star rhythms in the adrenal glands. Paclitaxel also shortened SCN slice rhythms, increased the amplitude of adrenal gland oscillations in PER2::luciferase cultures, and increased the concentration of pro-inflammatory cytokines and chemokines released from the SCN. These findings indicate that paclitaxel disrupts clock genes and behavior driven by the SCN, other brain regions, and adrenal glands, which were associated with chemotherapy-induced inflammation. Together, this preclinical work demonstrates that chemotherapy disrupts both central and peripheral circadian rhythms and supports the possibility that targeted circadian realignment therapies may be a novel and non-invasive way to improve patient outcomes after chemotherapy.


Mammary tumors alter the fecal bacteriome and permit enteric bacterial translocation.

  • Brett R Loman‎ et al.
  • BMC cancer‎
  • 2022‎

Cancer patients experience gastrointestinal and behavioral symptoms, and are at increased risk of systemic infection and inflammation. These conditions are a major source of morbidity and decreased quality of life prior to cancer treatment, but poorly defined etiologies impede successful treatment. The gastrointestinal microbiota shape inflammation, influence cancer progression and treatment, and colonize tumors. However, research has not directly determined if peripheral tumors influence the microbiome and intestinal physiology, thus influencing gastrointestinal and behavioral symptoms. Therefore, the purpose of this study was to examine consequences of orthotopic, syngeneic mammary tumor implantation, growth, and resection on fecal bacteriome composition and intestinal barrier function in relation to systemic inflammation and enteric bacterial translocation in mice.


Novel rodent model of breast cancer survival with persistent anxiety-like behavior and inflammation.

  • Leah M Pyter‎ et al.
  • Behavioural brain research‎
  • 2017‎

Breast cancer survivors are an expanding population that is troubled by lasting mental health problems, including depression and anxiety. These issues reduce quality-of-life throughout survivorhood. Research indicates that tumor biology, cancer treatments, and stress contribute to these mood disturbances. Although the mechanisms underlying these various causes remain under investigation, neuroinflammation is a leading hypothesis. To date, rodent models of recurrence-free tumor survival for understanding mechanisms by which these behavioral issues persist after cancer are lacking. Here, we test the extent to which potential behavioral symptoms persist after mammary tumor removal in mice (i.e., establishment of a cancer survivor model), while also empirically testing the causal role of tumors in the development of neuroinflammatory-mediated affective-like behaviors. Complete surgical resection of a non-metastatic orthotopic, syngeneic mammary tumor reversed tumor-induced increases of circulating cytokines (IL-6, CXCL1, IL-10) and myeloid-derived cells and modulated neuroinflammatory gene expression (Cd11b, Cxcl1). Multiple anxiety-like behaviors and some central and peripheral immune markers persisted or progressed three weeks after tumor resection. Together, these data indicate that persistent behavioral changes into cancer survivorhood may be due, in part, to changes in immunity that remain even after successful tumor removal. This novel survivor paradigm represents an improvement in modeling prevalent cancer survivorship issues and studying the basic mechanisms by which cancer/cancer treatments influence the brain and behavior.


Antibiotic treatment inhibits paclitaxel chemotherapy-induced activity deficits in female mice.

  • Corena V Grant‎ et al.
  • PloS one‎
  • 2023‎

Chemotherapy, a mainstay in the treatment of cancer, is associated with severe and debilitating side effects. Side effects can be physical (e.g., gastrointestinal distress, anemia, and hair loss) or mental (e.g., fatigue, cognitive dysfunction). Chemotherapy is known to alter the gut microbiota; thus, communication through the gut-brain axis may influence behavioral side effects. Here, we used a clinically-relevant paclitaxel chemotherapy regimen in combination with antibiotics to test the hypothesis that gut microbes contribute to chemotherapy-associated fatigue-like behaviors in female mice. Data presented suggest that chemotherapy-altered gut microbes contribute to fatigue-like behaviors in mice by disrupting energy homeostasis.


Tumors Alter Inflammation and Impair Dermal Wound Healing in Female Mice.

  • Leah M Pyter‎ et al.
  • PloS one‎
  • 2016‎

Tissue repair is an integral component of cancer treatment (e.g., due to surgery, chemotherapy, radiation). Previous work has emphasized the immunosuppressive effects of tumors on adaptive immunity and has shown that surgery incites cancer metastases. However, the extent to which and how tumors may alter the clinically-relevant innate immune process of wound healing remains an untapped potential area of improvement for treatment, quality of life, and ultimately, mortality of cancer patients. In this study, 3.5 mm full-thickness dermal excisional wounds were placed on the dorsum of immunocompetent female mice with and without non-malignant flank AT-84 murine oral squamous cell carcinomas. Wound closure rate, inflammatory cell number and inflammatory signaling in wounds, and circulating myeloid cell concentrations were compared between tumor-bearing and tumor-free mice. Tumors delayed wound closure, suppressed inflammatory signaling, and altered myeloid cell trafficking in wounds. An in vitro scratch "wounding" assay of adult dermal fibroblasts treated with tumor cell-conditioned media supported the in vivo findings. This study demonstrates that tumors are sufficient to disrupt fundamental and clinically-relevant innate immune functions. The understanding of these underlying mechanisms provides potential for therapeutic interventions capable of improving the treatment of cancer while reducing morbidities and mortality.


Tumor resection ameliorates tumor-induced suppression of neuroinflammatory and behavioral responses to an immune challenge in a cancer survivor model.

  • Jessica C Santos‎ et al.
  • Scientific reports‎
  • 2019‎

Breast cancer survivors display altered inflammatory responses to immune challenges relative to cancer-naive controls likely due to previous cancer treatments, stress associated with cancer, and/or tumor physiology. Proper inflammatory responses are necessary for adaptive sickness behaviors (e.g., fatigue, anorexia, and fever) and neuroinflammatory pathways are also implicated in mental health disturbances (e.g., cognitive impairment, depression) suffered by cancer patients and survivors. Rodent cancer models indicate that tumors are sufficient to exacerbate neuroinflammatory responses after an immune challenge, however primary tumors are not usually present in cancer survivors, and the behavioral consequences of these brain changes remain understudied. Therefore, we tested the extent to which mammary tumor resection attenuates tumor-induced neuroinflammation and sickness behavior following an immune challenge (i.p. lipopolysaccharide [LPS] injection) in mice. Tnf-α, Il-1β, and Il-6 mRNA decreased in multiple brain regions of LPS-treated tumor-bearing mice relative to LPS-treated controls; tumor resection attenuated these effects in some cases (but not Tnf-α). Tumors also attenuated sickness behaviors (hypothermia and lethargy) compared to LPS-treated controls. Tumor resection reversed these behavioral consequences, although basal body temperature remained elevated, comparable to tumor-bearing mice. Thus, tumors significantly modulate neuroinflammatory pathways with functional consequences and tumor resection mitigates most, but not all, of these changes.


Effects of dermal wounding on distal primary tumor immunobiology in mice.

  • Leah M Pyter‎ et al.
  • The Journal of surgical research‎
  • 2018‎

Before primary oral tumors are treated, various prophylactic procedures that require tissue repair are often necessary (e.g. biopsies, tooth extractions, radiation, and tracheotomies). Wound healing and tumor growth harness similar immune/inflammatory mechanisms. Our previous work indicates that tumors impair wound healing, although the extent to which tissue repair conversely influences tumor growth is poorly understood. Here, we test the hypothesis that dermal wound healing exacerbates primary tumor growth and influences tumor immunobiology.


Mammary tumors suppress aging-induced neuroinflammation in female Balb/c mice.

  • Ruth M Barrientos‎ et al.
  • Comprehensive psychoneuroendocrinology‎
  • 2020‎

Neuroinflammation confers changes in brain function (i.e., behavior) that are hypothesized to be adaptive in the short-term, but detrimental (e.g., depression, anxiety) if they persist. Both peripheral tumor growth (outside of the brain) and natural aging independently cause neuroinflammation in rodents, which is corroborated by clinical studies. Mammary tumor effects on neuroinflammation and behavior, however, are typically studied in young rodents, whereas most breast cancer patients are middle-aged. Therefore, the existing literature likely underestimates the resulting neuroinflammation that may occur in clinical cancer populations. The present study tested the hypothesis that aging exacerbates mammary tumor-induced neuroinflammation in female mice. Aging (16 months and ovariectomized) increased body and spleen masses, whereas tumors grew faster and increased spleen mass in young mice (12 weeks) only. Tumors (IL-6, IL-10, Tnfα, MCP-1, CXCL1, IP-10) and aging (IL-10, IFNγ) independently increased circulating inflammatory markers, although these variables were only significantly additive in one case (TNFα). In contrast to our prediction, the interaction between tumors and aging resulted in reduced mRNA and protein expression of select inflammatory markers in the hippocampus of tumor-bearing aged mice relative to aged controls. These results indicate that tumors reduce inflammatory activation in the brains of aged mice, a deficit that is likely disadvantageous. Further understanding of how aging and cancer interact to affect brain function is necessary to provide clinically-relevant results and identify mechanisms underlying persistent behavioral issues hampering adult cancer patients.


Photoperiod mediated changes in olfactory bulb neurogenesis and olfactory behavior in male white-footed mice (Peromyscus leucopus).

  • James C Walton‎ et al.
  • PloS one‎
  • 2012‎

Brain plasticity, in relation to new adult mammalian neurons generated in the subgranular zone of the hippocampus, has been well described. However, the functional outcome of new adult olfactory neurons born in the subventricular zone of the lateral ventricles is not clearly defined, as manipulating neurogenesis through various methods has given inconsistent and conflicting results in lab mice. Several small rodent species, including Peromyscus leucopus, display seasonal (photoperiodic) brain plasticity in brain volume, hippocampal function, and hippocampus-dependent behaviors; plasticity in the olfactory system of photoperiodic rodents remains largely uninvestigated. We exposed adult male P. leucopus to long day lengths (LD) and short day lengths (SD) for 10 to 15 weeks and then examined olfactory bulb cell proliferation and survival using the thymidine analog BrdU, olfactory bulb granule cell morphology using Golgi-Cox staining, and behavioral investigation of same-sex conspecific urine. SD mice did not differ from LD counterparts in granular cell morphology of the dendrites or in dendritic spine density. Although there were no differences due to photoperiod in habituation to water odor, SD mice rapidly habituated to male urine, whereas LD mice did not. In addition, short day induced changes in olfactory behavior were associated with increased neurogenesis in the caudal plexiform and granule cell layers of the olfactory bulb, an area known to preferentially respond to water-soluble odorants. Taken together, these data demonstrate that photoperiod, without altering olfactory bulb neuronal morphology, alters olfactory bulb neurogenesis and olfactory behavior in Peromyscus leucopus.


The effects of social isolation on wound healing mechanisms in female mice.

  • Leah M Pyter‎ et al.
  • Physiology & behavior‎
  • 2014‎

Various stressors impair wound healing in humans and rodents. For example, social isolation delays wound closure in rodents, but the healing mechanisms that underlie this delay have yet to be identified. Here, the effects of three weeks of social isolation on hypothalamic-pituitary-adrenal axis responses and healing factors involved in the inflammatory and proliferative phases of wound healing were assessed in adult female hairless mice. Social isolation reduced basal circulating corticosterone concentrations and increased body and thymus weights compared with group-housed controls. Isolation impaired dermal wound closure by up to 30% and reduced initial total wound bacterial load relative to controls. Inflammatory gene expression in the wounds was not affected by the observed differences in wound bacterial load. However, isolation reduced wound gene expression of keratinocyte growth factor and vascular endothelial growth factor, which are involved in keratinocyte proliferation/migration and angiogenesis during the proliferative phase of healing. These data indicate that social isolation induces healing impairments that may be attributed to reductions in growth factors necessary for proper skin cell proliferation and blood vessel growth during healing. This healing impairment occurred in the absence of both high wound bacterial load and elevated circulating glucocorticoids, which have previously been hypothesized to be required for stress-impaired healing in mice.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: