Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 2 papers out of 2 papers

Beyond Blast: Enabling Microbiologists to Better Extract Literature, Taxonomic Distributions and Gene Neighborhood Information for Protein Families.

  • Colbie J Reed‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2024‎

Capturing the published corpus of information on all members of a given protein family should be an essential step in any study focusing on specific members of that said family. Using a previously gathered dataset of more than 280 references mentioning a member of the DUF34 (NIF3/Ngg1-interacting Factor 3), we evaluated the efficiency of different databases and search tools, and devised a workflow that experimentalists can use to capture the most published information on members of a protein family in the least amount of time. To complement this workflow, web-based platforms allowing for the exploration of protein family members across sequenced genomes or for the analysis of gene neighborhood information were reviewed for their versatility and ease of use. Recommendations that can be used for experimentalist users, as well as educators, are provided and integrated within a customized, publicly accessible Wiki.


Queuosine Salvage in Bartonella henselae Houston 1: A Unique Evolutionary Path.

  • Samia Quaiyum‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Queuosine (Q) stands out as the sole tRNA modification that can be synthesized via salvage pathways. Comparative genomic analyses identified specific bacteria that showed a discrepancy between the projected Q salvage route and the predicted substrate specificities of the two identified salvage proteins: 1) the distinctive enzyme tRNA guanine-34 transglycosylase (TGT), responsible for inserting precursor bases into target tRNAs; and 2) Queuosine Precursor Transporter (QPTR) , a transporter protein that imports Q precursors. Organisms like the facultative intracellular pathogen Bartonella henselae, which possess only TGT and QPTR but lack predicted enzymes for converting preQ1 to Q, would be expected to salvage the queuine (q) base, mirroring the scenario for the obligate intracellular pathogen Chlamydia trachomatis. However, sequence analyses indicate that the substrate-specificity residues of their TGTs resemble those of enzymes inserting preQ1 rather than q. Intriguingly, mass spectrometry analyses of tRNA modification profiles in B. henselae reveal trace amounts of preQ1, previously not observed in a natural context. Complementation analysis demonstrates that B. henselae TGT and QPTR not only utilize preQ1, akin to their E. coli counterparts, but can also process q when provided at elevated concentrations. The experimental and phylogenomic analyses suggest that the Q pathway in B. henselae could represent an evolutionary transition among intracellular pathogens-from ancestors that synthesized Q de novo to a state prioritizing the salvage of q. Another possibility that will require further investigations is that the insertion of preQ1 has fitness advantages when B. henselae is growing outside a mammalian host.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: